5 bài tập Tìm GTLN – GTNN của hàm số y = f(x) trên khoảng, nửa khoảng (có lời giải)
4.6 0 lượt thi 2 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có: f '(x) = 3x2 – 12x + 9; f '(x) = 0 ⇔ x = 1 hoặc x = 3.
Bảng biến thiên của hàm số trên nửa khoảng [–1; +∞):

Từ bảng biến thiên, ta thấy \[\mathop {\min }\limits_{\left[ { - 1; + \infty } \right)} \] f (x) = f (–1) = −17 và hàm số không có giá trị lớn nhất trên [−1; +∞).
Lời giải
Xét \(g(x) = x + \frac{1}{x}\) trên khoảng \((0;5)\); \({g^\prime }(x) = 1 - \frac{1}{{{x^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = - 1({\rm{ lo }}ai)}\end{array}} \right.\)

Từ bảng biến thiên, ta thấy \({\min _{(0;5)}}f(x) = f(1) = 2\) và hàm số không tồn tại giá trị lớn nhất trên khoảng \((0;5)\)