12 bài tập Một số dạng toán thực tế liên quan đến Phương trình đường thẳng trong không gian (có lời giải)
55 người thi tuần này 4.6 55 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đường thẳng d đi qua \({\rm{M}}(4;2;20)\) và nhận \(\vec a = \frac{1}{{997}}\overrightarrow {MN} = \frac{1}{{997}}(0;997;0) = (0;1;0)\) làm vectơ chỉ phương có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 3 + t}\\{z = 20}\end{array}} \right.\)
Lời giải
Đường thẳng d đi qua \({\rm{M}}(1;1;1)\) và có vectơ chỉ phương \(\vec a = (0;0;1)\)
Đường thẳng d' đi qua \({\rm{N}}(10;20;5)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }} = (0;0;5) = 5\vec a\)
Thay tọa độ điểm M vào phương trình đường thẳng d ta được
\(\left\{ {\begin{array}{*{20}{l}}{1 = 10}\\{1 = 20}\\{1 = 5 + 5{t^\prime }}\end{array}{\rm{ (vô lí)}}{\rm{. Suy ra }}M \notin d.} \right.\)Vậy d // d'.
Lời giải
Đường thẳng d và d' lần lượt có vectơ chí phương là \(\overrightarrow {{a_1}} = (0;0;1),\overrightarrow {{a_2}} = (0;1;0)\)
Ta có \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương với nhau nên d và d' chéo nhau hoặc cắt nhau.
Ta xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{0 = 20}\\{0 = {t^\prime }}\\{50 + t = 50}\end{array}} \right.\) (vô nghiệm).
Vậy \(d\) và d' chéo nhau.
Lời giải
Đường thắng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (1;0;0),\overrightarrow {{a^\prime }} = (0;0;3)\)
Ta có \(\vec a \cdot \overrightarrow {{a^\prime }} = 1.0 + 0.0 + 0.3 = 0\). Do đó d và d' vuông góc với nhau.
Lời giải
Ta có \(\overrightarrow {MN} = (0;1;0)\)
Đường thẳng MN đi qua \({\rm{M}}(3;3;1,5)\) và nhận \(\overrightarrow {MN} = (0;1;0)\) làm vectơ chỉ phương có phương trình là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 3 + t}\\{z = 1,5}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.