10 bài tập Vận dụng công thức tính góc trong không gian vào giải quyết bài toán liên quan thực tế có lời giải
67 người thi tuần này 4.6 67 lượt thi 10 câu hỏi 60 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Đường thẳng AB có một vectơ chỉ phương \(\overrightarrow u = \left( {2; - 2;1} \right)\) và (Oxy) có một vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {2.0 + \left( { - 2} \right).0 + 1.1} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2}} }} = \frac{1}{3}\) (AB, (Oxy)) ≈ 19°.
Lời giải
Đáp án đúng là: C
Trong khoảng thời gian ngắn đó, máy bay chuyển động trên đường thẳng đi qua A nhận \(\overrightarrow v = \left( {0;\sqrt 3 ;1} \right)\) làm vectơ chỉ phương.
Mặt phẳng (Oxy) có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Ta có \(\sin \left( {\Delta ,\left( {Oxy} \right)} \right) = \frac{{\left| {\overrightarrow v .\overrightarrow k } \right|}}{{\left| {\overrightarrow v } \right|.\left| {\overrightarrow k } \right|}} = \frac{1}{2}\) (, (Oxy)) = 30°.
Lời giải
Đáp án đúng là: B
Đường thẳng a nhận \(\overrightarrow {MN} = \left( { - 1;2; - 2} \right)\) làm vectơ chỉ phương, đường thẳng b nhận \(\overrightarrow {PQ} = \left( {2;3;6} \right)\) làm vectơ chỉ phương.
Do đó \(\cos \left( {a,b} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow {PQ} } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {PQ} } \right|}} = \frac{8}{{21}}\) (a, b) ≈ 68°.
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {OA} = \left( {5; - 3;1} \right),\overrightarrow {OB} = \left( { - 3; - 4;2} \right)\).
Mặt phẳng (OAB) nhận \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( { - 2; - 13; - 29} \right)\) là một vectơ pháp tuyến.
Mặt khác \(\overrightarrow {CA} = \left( {5; - 3; - 4} \right)\) nên ta có:
\(\sin \left( {CA,\left( {OAB} \right)} \right) = \frac{{\left| {5.\left( { - 2} \right) + \left( { - 3} \right).\left( { - 13} \right) + \left( { - 4} \right).\left( { - 29} \right)} \right|}}{{\sqrt {{5^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 4} \right)}^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 13} \right)}^2} + {{\left( { - 29} \right)}^2}} }} = \frac{{29}}{{13\sqrt {12} }}\).
Suy ra (CA, (OAB)) ≈ 40°.
Lời giải
Đáp án đúng là: A
Có \(\overrightarrow {{n_1}} = \left( {1; - 2;0} \right),\overrightarrow {{n_2}} = \left( {1; - 2; - 3} \right)\) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Khi đó \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {1.1 + \left( { - 2} \right).\left( { - 2} \right) + 0.\left( { - 3} \right)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 3} \right)}^2}} }} = \frac{5}{{\sqrt {70} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 Đánh giá
50%
40%
0%
0%
0%