Trong một sân khấu đã thiết lập sẵn một hệ trục tọa Oxyz. Biết tia sáng có phương trình \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3\end{array} \right.\) và mặt sàn sân khấu là mặt phẳng (P) có phương trình y = 0. Tính góc giữa tia sáng và mặt sàn sân khấu.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow j = \left( {0;1;0} \right)\) và d có vectơ chỉ phương \(\overrightarrow u = \left( {1;1;0} \right)\).
Ta có \(\sin \left( {d,\left( P \right)} \right) = \frac{{\left| {0.1 + 1.1 + 0.0} \right|}}{{\sqrt {0 + 1 + 0} .\sqrt {1 + 1 + 0} }} = \frac{{\sqrt 2 }}{2}\) (d, (P)) = 45°.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Mặt phẳng (ABC) có cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {4;0; - 2} \right),\overrightarrow {BC} = \left( {0;9;0} \right)\).
Ta có \(\left[ {\overrightarrow {AB} ,\overrightarrow {BC} } \right] = \left( {18;0;36} \right)\).
Do đó vectơ pháp tuyến của mặt phẳng (ABC) là \(\overrightarrow {{n_1}} = \left( {1;0;2} \right)\).
Lại có, (Oxy) có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {0;0;1} \right)\).
Ta có góc α là góc giữa mái nhà bên phải và nên nhà. Khi đó:
\(\cos \alpha = \frac{{\left| {1.0 + 0.0 + 2.1} \right|}}{{\sqrt {{1^2} + {2^2}} .\sqrt {{1^2}} }} = \frac{2}{{\sqrt 5 }}\) α ≈ 27°.
Lời giải
Đáp án đúng là: A
Đường thẳng AB có một vectơ chỉ phương \(\overrightarrow u = \left( {2; - 2;1} \right)\) và (Oxy) có một vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {2.0 + \left( { - 2} \right).0 + 1.1} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2}} }} = \frac{1}{3}\) (AB, (Oxy)) ≈ 19°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.