Câu hỏi:

07/05/2025 1,287

Trên một sườn núi (có độ nghiêng đều), người ta trồng một cây thông và muốn giữ nó không bị nghiêng bằng hai sợi dây neo như hình vẽ. Giả thiết cây thông mọc thẳng đứng và trong một hệ tọa độ phù hợp, các điểm gốc O (gốc cây thông) và A, B (nơi buộc dây neo) có tọa độ tương ứng là O(0; 0; 0), A(5; −3; 1), B(−3; −4; 2), đơn vị trên mỗi trục tọa độ là mét. Biết rằng hai dây neo đều được buộc vào cây thông tại điểm C(0; 0; 5) và được kéo căng tạo thành các đoạn thẳng. Khi đó, góc tạo bởi sợi dây neo CA và mặt phẳng sườn núi là bao nhiêu độ (làm tròn kết quả đến hàng đơn vị của độ).

Khi đó, góc tạo bởi sợi dây neo CA và mặt phẳng sườn núi là bao nhiêu độ (làm tròn kết quả đến hàng đơn vị của độ). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(\overrightarrow {OA} = \left( {5; - 3;1} \right),\overrightarrow {OB} = \left( { - 3; - 4;2} \right)\).

Mặt phẳng (OAB) nhận \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( { - 2; - 13; - 29} \right)\) là một vectơ pháp tuyến.

Mặt khác \(\overrightarrow {CA} = \left( {5; - 3; - 4} \right)\) nên ta có:

\(\sin \left( {CA,\left( {OAB} \right)} \right) = \frac{{\left| {5.\left( { - 2} \right) + \left( { - 3} \right).\left( { - 13} \right) + \left( { - 4} \right).\left( { - 29} \right)} \right|}}{{\sqrt {{5^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 4} \right)}^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 13} \right)}^2} + {{\left( { - 29} \right)}^2}} }} = \frac{{29}}{{13\sqrt {12} }}\).

Suy ra (CA, (OAB)) ≈ 40°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Mặt phẳng (ABC) có cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {4;0; - 2} \right),\overrightarrow {BC} = \left( {0;9;0} \right)\).

Ta có \(\left[ {\overrightarrow {AB} ,\overrightarrow {BC} } \right] = \left( {18;0;36} \right)\).

Do đó vectơ pháp tuyến của mặt phẳng (ABC) là \(\overrightarrow {{n_1}} = \left( {1;0;2} \right)\).

Lại có, (Oxy) có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {0;0;1} \right)\).

Ta có góc α là góc giữa mái nhà bên phải và nên nhà. Khi đó:

\(\cos \alpha = \frac{{\left| {1.0 + 0.0 + 2.1} \right|}}{{\sqrt {{1^2} + {2^2}} .\sqrt {{1^2}} }} = \frac{2}{{\sqrt 5 }}\) α ≈ 27°.

Lời giải

Đáp án đúng là: A

Đường thẳng AB có một vectơ chỉ phương \(\overrightarrow u = \left( {2; - 2;1} \right)\) và (Oxy) có một vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).

Do đó \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {2.0 + \left( { - 2} \right).0 + 1.1} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{1^2}} }} = \frac{1}{3}\) (AB, (Oxy)) ≈ 19°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP