10 bài tập Vận dụng kiến thức phương trình mặt phẳng vào giải quyết bài toán liên quan đến thực tế có lời giải
94 người thi tuần này 4.6 361 lượt thi 10 câu hỏi 60 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: D
Vì B(3k; 2k; k) (CBEF): z = 3 nên k = 3.
Suy ra B(9; 6; 3). Khi đó a + b + c = 18.
Lời giải
Đáp án đúng là: D
Do mặt dưới của mái nhà thuộc mặt phẳng vuông góc với trục Oz và đi qua A(3; 4; 33) nên phương trình mặt phẳng chứa mặt dưới của mái nhà là: z – 33 = 0.
Khoảng cách từ điểm D đến mặt phẳng chứa mặt dưới của mái nhà bằng:
\(\frac{{\left| {35 - 33} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 2\).
Lời giải
Đáp án đúng là: B
Chọn hệ trục tọa độ như hình vẽ

Ta có \(OC = \sqrt {O{B^2} - B{C^2}} = 4\). Suy ra B(3; 4; 0).
Mặt phẳng chứa quỹ đạo đi qua O(0; 0; 0) và nhận \(\overrightarrow k \left( {0;0;1} \right),\overrightarrow {OB} \left( {3;4;0} \right)\) làm vectơ chỉ phương.
Suy ra vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow k ,\overrightarrow {OB} } \right] = \left( { - 4;3;0} \right)\).
Vậy phương trình mặt phẳng chứa quỹ đạo của quả bóng là
−4(x – 0) + 3(y – 0) + 0(z – 0) = 0 4x – 3y = 0.
Do đó a + c = 4.
Câu 4
A. 2,58;
B. 2,85;
C. 3,85;
D. 3,58.
Lời giải
Đáp án đúng là: B
Ta có \(\overrightarrow {AB} = \left( {3;1;0} \right),\overrightarrow {AC} = \left( {6;2; - 1} \right)\).
Mặt phẳng (ABC) có vectơ pháp tuyến là \(\overrightarrow n = \left( { - 1;3;0} \right)\) nên phương trình (ABC):
x – 3y + 3 = 0.
Vậy khoảng cách \(d\left( {D,\left( {ABC} \right)} \right) = \frac{{\left| {1.6 + 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{9\sqrt {10} }}{{10}} \approx 2,85\).
Lời giải
Đáp án đúng là: A
Vì (Q) // (P) nên (Q) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {6;5;1} \right)\).
Nên phương trình mặt phẳng (Q): 6x + 5y + z – 12 = 0.
Do đó A + B + C + D = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



