Câu hỏi:

06/05/2025 402

Trong một khung lưới ô vuông gồm các hình lập phương, người ta đưa ra một cách kiểm tra bốn nút lưới (đỉnh hình lập phương) bất kì có đồng phẳng hay không bằng cách gắn hệ trục tọa độ Oxyz vào khung lưới ô vuông và lập phương trình mặt phẳng đi qua ba nút lưới trong bốn nút lưới đã cho. Giả sử ba nút lưới mà tọa độ lần lượt là (1; 1; 10), (4; 3; 1), (3; 2; 5) và mặt phẳng đi qua ba nút lưới đó có phương trình x + my + nz + p = 0. Tính giá trị m +n + p.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Giả sử A(1; 1; 10), B(4; 3; 1), C(3; 2; 5),

Có \(\overrightarrow {AB} = \left( {3;2; - 9} \right),\overrightarrow {AC} = \left( {2;1; - 5} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1; - 3; - 1} \right)\).

Mặt phẳng (ABC) đi qua A(1; 1; 10) và nhận \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1; - 3; - 1} \right)\) làm vectơ pháp tuyến có phương trình là: −(x – 1) – 3(y – 1) – (z – 10) = 0 x + 3y + z − 14 = 0.

Do đó m + n + p = 3 + 1 − 14 = 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi mặt phẳng (P) đi qua 3 điểm pháo A(3; 0; 0), B(0; 1,5; 0), C(0; 0; −1,5) nên có phương trình là \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1 \Leftrightarrow x + 2y - 2z - 3 = 0\).

Giả sử điểm G(xG; yG; zG) là vị trí khi mục tiêu bay tới mặt phẳng (P) để tới vị trí N nên G ∈ (P).

Do \(\overrightarrow {MG} ,\overrightarrow {MN} \) là 2 vectơ cùng hướng nên tồn tại số thực t > 0 sao cho \(\overrightarrow {MG} = t\overrightarrow {MN} \).

Ta có \(\overrightarrow {MG} = \left( {{x_G} - 5;{y_G} - 2;{z_G} - 4} \right);\overrightarrow {MN} = \left( { - 4; - 2; - 6} \right)\).

Nên \(\left\{ \begin{array}{l}{x_G} - 5 = - 4t\\{y_G} - 2 = - 2t\\{z_G} - 4 = - 6t\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 5 - 4t\\{y_G} = 2 - 2t\\{z_G} = 4 - 6t\end{array} \right.\).

Vì G ∈ (P) 5 – 4t + 2(2 – 2t) – 2(4 – 6t) = 3 t = \(\frac{1}{2}\) G(3; 1; 1).

Do đó \(\overrightarrow {AG} = \left( {0;1;1} \right) \Rightarrow AG = \sqrt 2 \approx 1,41\).

Lời giải

Đáp án đúng là: D

Do mặt dưới của mái nhà thuộc mặt phẳng vuông góc với trục Oz và đi qua A(3; 4; 33) nên phương trình mặt phẳng chứa mặt dưới của mái nhà là: z – 33 = 0.

Khoảng cách từ điểm D đến mặt phẳng chứa mặt dưới của mái nhà bằng:

\(\frac{{\left| {35 - 33} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP