Một ngôi nhà có các bậc thang của cầu thang đã thiết lập hệ tọa độ Oxyz. Biết hai mặt bậc thang song song nằm trên hai mặt phẳng phân biệt: (P): 2x – y + 2z + 8 = 0 và (Q): 2x – y + 2z + 2 = 0. Khoảng cách giữa hai bậc thang này bằng bao nhiêu?
Quảng cáo
Trả lời:

Đáp án đúng là: A
Lấy A(0; 0; −4) ∈ (P), dễ thấy (P) // (Q)
Khi đó \(d\left( {\left( P \right),\left( Q \right)} \right) = d\left( {A,\left( Q \right)} \right) = \frac{{\left| {2.\left( { - 4} \right) + 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{6}{3} = 2\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Gọi mặt phẳng (P) đi qua 3 điểm pháo A(3; 0; 0), B(0; 1,5; 0), C(0; 0; −1,5) nên có phương trình là \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1 \Leftrightarrow x + 2y - 2z - 3 = 0\).
Giả sử điểm G(xG; yG; zG) là vị trí khi mục tiêu bay tới mặt phẳng (P) để tới vị trí N nên G ∈ (P).
Do \(\overrightarrow {MG} ,\overrightarrow {MN} \) là 2 vectơ cùng hướng nên tồn tại số thực t > 0 sao cho \(\overrightarrow {MG} = t\overrightarrow {MN} \).
Ta có \(\overrightarrow {MG} = \left( {{x_G} - 5;{y_G} - 2;{z_G} - 4} \right);\overrightarrow {MN} = \left( { - 4; - 2; - 6} \right)\).
Nên \(\left\{ \begin{array}{l}{x_G} - 5 = - 4t\\{y_G} - 2 = - 2t\\{z_G} - 4 = - 6t\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 5 - 4t\\{y_G} = 2 - 2t\\{z_G} = 4 - 6t\end{array} \right.\).
Vì G ∈ (P) 5 – 4t + 2(2 – 2t) – 2(4 – 6t) = 3 t = \(\frac{1}{2}\) G(3; 1; 1).
Do đó \(\overrightarrow {AG} = \left( {0;1;1} \right) \Rightarrow AG = \sqrt 2 \approx 1,41\).
Lời giải
Đáp án đúng là: D
Do mặt dưới của mái nhà thuộc mặt phẳng vuông góc với trục Oz và đi qua A(3; 4; 33) nên phương trình mặt phẳng chứa mặt dưới của mái nhà là: z – 33 = 0.
Khoảng cách từ điểm D đến mặt phẳng chứa mặt dưới của mái nhà bằng:
\(\frac{{\left| {35 - 33} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.