Câu hỏi:

06/05/2025 3,680 Lưu

Khi gắn hệ trục tọa độ Oxyz (đơn vị trên mỗi trục tọa độ là dm) vào một ngôi nhà 1 tầng, người ta thấy rằng mặt trên và mặt dưới của mái nhà thuộc các mặt phẳng vuông góc với trục Oz. Biết rằng các vị trí A(3; 4; 33), D(9; 8; 35) lần lượt thuộc mặt dưới, mặt trên của mái nhà. Độ dày của mái nhà được tính bằng khoảng cách giữa mặt trên và mặt dưới của mái nhà đó. Hãy cho biết độ dày của mái nhà đó là bao nhiêu dm?

A. 33;

B. 4;

C. 3;

D. 2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Do mặt dưới của mái nhà thuộc mặt phẳng vuông góc với trục Oz và đi qua A(3; 4; 33) nên phương trình mặt phẳng chứa mặt dưới của mái nhà là: z – 33 = 0.

Khoảng cách từ điểm D đến mặt phẳng chứa mặt dưới của mái nhà bằng:

\(\frac{{\left| {35 - 33} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi mặt phẳng (P) đi qua 3 điểm pháo A(3; 0; 0), B(0; 1,5; 0), C(0; 0; −1,5) nên có phương trình là \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1 \Leftrightarrow x + 2y - 2z - 3 = 0\).

Giả sử điểm G(xG; yG; zG) là vị trí khi mục tiêu bay tới mặt phẳng (P) để tới vị trí N nên G ∈ (P).

Do \(\overrightarrow {MG} ,\overrightarrow {MN} \) là 2 vectơ cùng hướng nên tồn tại số thực t > 0 sao cho \(\overrightarrow {MG} = t\overrightarrow {MN} \).

Ta có \(\overrightarrow {MG} = \left( {{x_G} - 5;{y_G} - 2;{z_G} - 4} \right);\overrightarrow {MN} = \left( { - 4; - 2; - 6} \right)\).

Nên \(\left\{ \begin{array}{l}{x_G} - 5 = - 4t\\{y_G} - 2 = - 2t\\{z_G} - 4 = - 6t\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 5 - 4t\\{y_G} = 2 - 2t\\{z_G} = 4 - 6t\end{array} \right.\).

Vì G ∈ (P) 5 – 4t + 2(2 – 2t) – 2(4 – 6t) = 3 t = \(\frac{1}{2}\) G(3; 1; 1).

Do đó \(\overrightarrow {AG} = \left( {0;1;1} \right) \Rightarrow AG = \sqrt 2 \approx 1,41\).

Lời giải

Đáp án đúng là: B

Chọn hệ trục tọa độ như hình vẽ

Ta có \(OC = \sqrt {O{B^2} - B{C^2}} = 4\). Suy ra B(3; 4; 0).

Mặt phẳng chứa quỹ đạo đi qua O(0; 0; 0) và nhận \(\overrightarrow k \left( {0;0;1} \right),\overrightarrow {OB} \left( {3;4;0} \right)\) làm vectơ chỉ phương.

Suy ra vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow k ,\overrightarrow {OB} } \right] = \left( { - 4;3;0} \right)\).

Vậy phương trình mặt phẳng chứa quỹ đạo của quả bóng là

−4(x – 0) + 3(y – 0) + 0(z – 0) = 0 4x – 3y = 0.

Do đó a + c = 4.