Câu hỏi:

06/05/2025 8,730 Lưu

Khi gắn hệ tọa độ Oxyz (đơn vị trên mỗi trục tính theo km) vào một trận địa pháo phòng không, mặt phẳng (Oxy) trùng với mặt đất. Trong tập luyện, một vùng mặt phẳng trong tầm hoạt động của pháo được giữ bởi 3 điểm pháo A(3; 0; 0), B(0; 1,5; 0), C(0; 0; −1,5). Một mục tiêu bay từ M(5; 2; 4) tới N(1; 0; −2). Khoảng cách từ điểm pháo A tới vị trí va chạm của mục tiêu khi tới mặt phẳng là bao nhiêu km (kết quả làm tròn đến hàng phần trăm).

A. 1,41;

B. 1,14;

C. 2,41;

D. 2,14.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Gọi mặt phẳng (P) đi qua 3 điểm pháo A(3; 0; 0), B(0; 1,5; 0), C(0; 0; −1,5) nên có phương trình là \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1 \Leftrightarrow x + 2y - 2z - 3 = 0\).

Giả sử điểm G(xG; yG; zG) là vị trí khi mục tiêu bay tới mặt phẳng (P) để tới vị trí N nên G ∈ (P).

Do \(\overrightarrow {MG} ,\overrightarrow {MN} \) là 2 vectơ cùng hướng nên tồn tại số thực t > 0 sao cho \(\overrightarrow {MG} = t\overrightarrow {MN} \).

Ta có \(\overrightarrow {MG} = \left( {{x_G} - 5;{y_G} - 2;{z_G} - 4} \right);\overrightarrow {MN} = \left( { - 4; - 2; - 6} \right)\).

Nên \(\left\{ \begin{array}{l}{x_G} - 5 = - 4t\\{y_G} - 2 = - 2t\\{z_G} - 4 = - 6t\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 5 - 4t\\{y_G} = 2 - 2t\\{z_G} = 4 - 6t\end{array} \right.\).

Vì G ∈ (P) 5 – 4t + 2(2 – 2t) – 2(4 – 6t) = 3 t = \(\frac{1}{2}\) G(3; 1; 1).

Do đó \(\overrightarrow {AG} = \left( {0;1;1} \right) \Rightarrow AG = \sqrt 2 \approx 1,41\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có \(\overrightarrow {AB} = \left( {3;1;0} \right),\overrightarrow {AC} = \left( {6;2; - 1} \right)\).

Mặt phẳng (ABC) có vectơ pháp tuyến là \(\overrightarrow n = \left( { - 1;3;0} \right)\) nên phương trình (ABC):

x – 3y + 3 = 0.

Vậy khoảng cách \(d\left( {D,\left( {ABC} \right)} \right) = \frac{{\left| {1.6 + 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{9\sqrt {10} }}{{10}} \approx 2,85\).

Lời giải

Đáp án đúng là: B

Chọn hệ trục tọa độ như hình vẽ

Ta có \(OC = \sqrt {O{B^2} - B{C^2}} = 4\). Suy ra B(3; 4; 0).

Mặt phẳng chứa quỹ đạo đi qua O(0; 0; 0) và nhận \(\overrightarrow k \left( {0;0;1} \right),\overrightarrow {OB} \left( {3;4;0} \right)\) làm vectơ chỉ phương.

Suy ra vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow k ,\overrightarrow {OB} } \right] = \left( { - 4;3;0} \right)\).

Vậy phương trình mặt phẳng chứa quỹ đạo của quả bóng là

−4(x – 0) + 3(y – 0) + 0(z – 0) = 0 4x – 3y = 0.

Do đó a + c = 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP