Đề kiểm tra Tính đơn điệu và cực trị của hàm số (có lời giải) - Đề 1
4.6 0 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn B
Dựa vào bảng biến thiên, ta có đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {3\,;\, - 4} \right)\).
Câu 2
Lời giải
Chọn D
Từ đồ thị hàm số ta thấy hàm số \(y = f\left( x \right) + 2024\) đồng biến khoảng \(\left( {0\,;\,2} \right)\).
Câu 3
Lời giải
Chọn B
Đặt \(f\left( x \right) = \left( {x + 2} \right){\left( {x - 1} \right)^2}\) có đồ thị .
Khi đó \(g\left( x \right) = \left| {x - 1} \right|\left( {{x^2} + x - 2} \right) = \left\{ \begin{array}{l}f\left( x \right),x > 1\\ - f\left( x \right),x \le 1\end{array} \right.\).
Do đó đồ thị hàm số \(g\left( x \right)\) gồm hai phần:
Phần 1: Lấy một phần đồ thị \[\left( C \right)\] ứng với \(x > 1.\)
Phần 2: Với phần đồ thị \[\left( C \right)\] ứng với \(x \le 1\) ta lấy đối xứng qua trục \(Ox\).
Lời giải
Chọn A
\[y = \frac{1}{3}{x^3} - \frac{{{m^2} + 3}}{2}{x^2} - \left( {{m^3} + m - 2} \right)x + {m^2}\]
\[y' = {x^2} - \left( {{m^2} + 3} \right)x - \left( {{m^3} + m - 2} \right)\]
\[y' = 0 \Leftrightarrow {x^2} - \left( {{m^2} + 3} \right)x - \left( {{m^3} + m - 2} \right) = 0\]
\[ \Leftrightarrow {x^2} - \left( { - m + 1} \right)x - \left( {{m^2} + m + 2} \right)x + \left( { - m + 1} \right)\left( {{m^2} + m + 2} \right) = 0\]
\[ \Leftrightarrow \left( {x + m - 1} \right)\left( {x - {m^2} - m - 2} \right) = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}x + m - 1 = 0\\x - {m^2} - m - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - m + 1\\x = {m^2} + m + 2\end{array} \right.\].
Ta có \[{m^2} + m + 2 - \left( { - m + 1} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2} \ge 0\] nên để hàm số đã cho có cực đại và cực tiểu thì \[m + 1 \ne 0 \Leftrightarrow m \ne - 1\], và ta cũng suy ra được \[{m^2} + m + 2 > - m + 1\] với mọi \[m \ne - 1\] nên , \[{x_{{\rm{CT}}}} = {m^2} + m + 2\] .
Mà \(m\) nguyên thuộc đoạn \[\left[ { - 9;9} \right]\], \[m \ne - 1\] nên \[m \in \left\{ { - 9; - 8;...; - 2} \right\}\].
Vậy có \[8\] giá trị của \(m\) thỏa mãn ycbt.
Câu 5
Lời giải
Chọn A
Từ bảng biến thiên suy ra hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.