12 bài tập Một số bài toán về đường tiệm cận của đồ thị hàm số có chứa tham số có lời giải
34 người thi tuần này 4.6 85 lượt thi 12 câu hỏi 60 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Với m = −4 thì \[y = \frac{{ - 4x - 8}}{{x + 2}} = - 4\] không thỏa mãn.
Do đó m ≠ −4 thì hàm số luôn có hai đường tiệm cận x = −2; y = m.
Lời giải
Đáp án đúng là: C
+) b = 0 đồ thị hàm số \(y = \frac{{ax + 1}}{{ - 2}}\) không có tiệm cận.
+) b ≠ 0, tập xác định của hàm số \(y = \frac{{ax + 1}}{{bx - 2}}\) là \[D = \mathbb{R}\backslash \left\{ {\frac{2}{b}} \right\}\].
\[\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ax + 1}}{{bx - 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{a + \frac{1}{x}}}{{b - \frac{2}{x}}} = \frac{a}{b}\].
đồ thị hàm số \(y = \frac{{ax + 1}}{{bx - 2}}\) có tiệm cận ngang là đường thẳng \(y = \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{1}{2} \Leftrightarrow b = 2a\).
\[\mathop {\lim }\limits_{x \to {{\frac{2}{b}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{2}{b}}^ + }} \frac{{ax + 1}}{{bx - 2}} = \left[ \begin{array}{l} + \infty \\ - \infty \end{array} \right.\].
đồ thị hàm số \(y = \frac{{ax + 1}}{{bx - 2}}\) có tiệm cận đứng là đường thẳng\(x = \frac{2}{b} \Rightarrow \frac{2}{b} = 1 \Leftrightarrow b = 2 \Rightarrow a = 1\).
Vậy a = 1; b = 2.
Lời giải
Đáp án đúng là: D
\(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}} = \frac{{{x^2} + m}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).
\[\mathop {\lim y}\limits_{x \to \pm \infty } = 1 \Rightarrow \] y = 1 là đường tiệm cận ngang.
Đồ thị hàm số \(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}}\) có đúng hai đường tiệm cận khi và chỉ khi đồ thị hàm số có đúng một tiệm cận đứng. Suy ra phương trình x2 + m = 0 nhận nghiệm x = 1 hoặc x = 2.
Khi đó: m = −1 hoặc m = −4.
Với m = −1 có một tiệm cận đứng x = 2.
Với m = −4 có một tiệm cận đứng x = 1.
Vậy m ∈ {−1; −4}.
Lời giải
Đáp án đúng là: C
Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - \left( {2mx + 3} \right)} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 4}}{{x + 1}} = 0\).
Vậy đường tiệm cận xiên có phương trình y = 2mx + 3.
Đường thẳng này qua điểm M(1; 7) nên 2m.1 + 3 = 7 m = 2.
Lời giải
Đáp án đúng là: A
Đồ thị hàm số nhận x = −m – 3 làm tiệm cận đứng −m – 3 = 0 m = −3.
Đồ thị hàm số nhận y = n – 3 làm tiệm cận ngang n – 3 = 0 n = 3.
Vậy m + n = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
17 Đánh giá
50%
40%
0%
0%
0%