Câu hỏi:
19/03/2025 122
Tìm điều kiện của tham số m để đồ thị của hàm số \(y = \frac{{\left( {2m + 1} \right)x + 3}}{{x + 1}}\) có đường tiệm cận ngang đi qua điểm A(−2; 7).
Tìm điều kiện của tham số m để đồ thị của hàm số \(y = \frac{{\left( {2m + 1} \right)x + 3}}{{x + 1}}\) có đường tiệm cận ngang đi qua điểm A(−2; 7).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Nếu m = 1, khi đó ta có hàm số \(y = \frac{{3x + 3}}{{x + 1}} = 3\) không có tiệm cận qua điểm A(−2; 7).
Nếu m ≠ 1 thì đồ thị của hàm số có tiệm cận đứng là x = −1 và tiệm cận ngang là y = 2m + 1.
Đường tiệm cận ngang đi qua điểm A(−2; 7) nên 2m + 1 = 7 Û m =3.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đồ thị hàm số \[y = f\left( x \right) = \frac{{nx + 1}}{{x + m}}\]; (mn ≠ 1) có hai đường tiệm cận x = −m = −1; y =
n = 2 Þ m + n = 3.
Lời giải
Đáp án đúng là: C
Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - \left( {2mx + 3} \right)} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 4}}{{x + 1}} = 0\).
Vậy đường tiệm cận xiên có phương trình y = 2mx + 3.
Đường thẳng này qua điểm M(1; 7) nên 2m.1 + 3 = 7 m = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.