Câu hỏi:

19/03/2025 152

Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - 8x + m}}\] có 3 đường tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = 0\) nên đồ thị hàm số có một tiện cận ngang y = 0.

Đồ thị hàm số có 3 đường tiệm cận khi và chỉ khi đồ thị hàm số có hai đường tiệm cận đứng phương trình x2 – 8x + m = 0 có hai nghiệm phân biệt khác 1.\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 16 - m > 0\\m - 7 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 16\\m \ne 7\end{array} \right.\).

Kết hợp với điều kiện m nguyên dương ta có m ∈ {1; 2; 3; …; 6; 8; …; 15}.

Vậy có 14 giá trị của m thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đồ thị hàm số \[y = f\left( x \right) = \frac{{nx + 1}}{{x + m}}\]; (mn ≠ 1) có hai đường tiệm cận x = −m = −1; y =

n = 2 Þ m + n = 3.

Lời giải

Đáp án đúng là: C

Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - \left( {2mx + 3} \right)} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 4}}{{x + 1}} = 0\).

Vậy đường tiệm cận xiên có phương trình y = 2mx + 3.

Đường thẳng này qua điểm M(1; 7) nên 2m.1 + 3 = 7 m = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP