Câu hỏi:

19/03/2025 295 Lưu

Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - 8x + m}}\] có 3 đường tiệm cận?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = 0\) nên đồ thị hàm số có một tiện cận ngang y = 0.

Đồ thị hàm số có 3 đường tiệm cận khi và chỉ khi đồ thị hàm số có hai đường tiệm cận đứng phương trình x2 – 8x + m = 0 có hai nghiệm phân biệt khác 1.\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 16 - m > 0\\m - 7 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 16\\m \ne 7\end{array} \right.\).

Kết hợp với điều kiện m nguyên dương ta có m ∈ {1; 2; 3; …; 6; 8; …; 15}.

Vậy có 14 giá trị của m thỏa mãn đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

\(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}} = \frac{{{x^2} + m}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

\[\mathop {\lim y}\limits_{x \to \pm \infty } = 1 \Rightarrow \] y = 1 là đường tiệm cận ngang.

Đồ thị hàm số \(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}}\) có đúng hai đường tiệm cận khi và chỉ khi đồ thị hàm số có đúng một tiệm cận đứng. Suy ra phương trình x2 + m = 0 nhận nghiệm x = 1 hoặc x = 2.

Khi đó: m = −1 hoặc m = −4.

Với m = −1 có một tiệm cận đứng x = 2.

Với m = −4 có một tiệm cận đứng x = 1.

Vậy m ∈ {−1; −4}.

Lời giải

Đáp án đúng là: C

Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - \left( {2mx + 3} \right)} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 4}}{{x + 1}} = 0\).

Vậy đường tiệm cận xiên có phương trình y = 2mx + 3.

Đường thẳng này qua điểm M(1; 7) nên 2m.1 + 3 = 7 m = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP