(Trả lời ngắn) 4 bài tập Phương trình đường thẳng trong không gian (có lời giải)
29 người thi tuần này 4.6 89 lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án: \[P = 0\]
Ta có \[d{\rm{//}}\Delta \].
Chọn \[A\left( {2;\, - 1;\,1} \right) \in \left( d \right),\,B\left( {3;\, - 2;\,1} \right) \in \left( \Delta \right)\].
\[\overrightarrow {AB} = \left( {1;\, - 1;\,0} \right)\]
Phương trình mặt phẳng chứa hai đường thẳng \[\left( d \right)\] và \[\left( \Delta \right)\] qua \[A\left( {2;\, - 1;\,1} \right)\] và có VTPT \[\overrightarrow n = \left[ {\overrightarrow {AB} ,\,\overrightarrow {{u_{\left( d \right)}}} } \right] = \left( { - 2;\, - 2;\,4} \right) = - 2\left( {1;\,1;\, - 2} \right)\] là:
\[1\left( {x - 2} \right) + 1\left( {y + 1} \right) - 2\left( {z - 1} \right) = 0 \Leftrightarrow x + y - 2z + 1 = 0\].
Lời giải
Đáp án: \[h - k = 0\]
\[H \in {\Delta _1} \Leftrightarrow H\left( {3 + 2t;t;1 + t} \right)\].
\[K \in {\Delta _2} \Leftrightarrow K\left( {1 + m;2 + 2m;m} \right)\].
Ta có\[\overrightarrow {HK} = \left( {m - 2t - 2;2m - t + 2;m - t - 1} \right)\].
Đường thẳng \[d\] có một VTCP là \[\overrightarrow {{u_d}} = \left( {1;1; - 2} \right)\].
\[\Delta \bot d \Leftrightarrow \]\[\overrightarrow {{u_d}} .\overrightarrow {HK} = 0\]\[ \Leftrightarrow m - t + 2 = 0 \Leftrightarrow m = t - 2 \Rightarrow \overrightarrow {HK} = \left( { - t - 4;t - 2; - 3} \right).\]
Ta có\[H{K^2} = {\left( { - t - 4} \right)^2} + {\left( {t - 2} \right)^2} + {\left( { - 3} \right)^2} = 2{\left( {t + 1} \right)^2} + 27 \ge 27,\forall t \in \mathbb{R}\]
\[ \Rightarrow minHK = \sqrt {27} ,\]đạt được khi \[t = - 1\].
Khi đó ta có \[\overrightarrow {HK} = \left( { - 3; - 3; - 3} \right)\], suy ra \[\overrightarrow u \left( {1;1;1} \right) \Rightarrow h = k = 1 \Rightarrow h - k = 0.\]
Lời giải
Đáp án: \(d\left( {M\,,\,\left( {Oxy} \right)} \right) = 4\)
Gọi \(M\left( {x\,;\,y\,;\,z} \right)\) là điểm cần tìm.
\(\overrightarrow {AM} = \left( {x - 3\,;\,y - 1\,;\,z - 2} \right)\), \(\overrightarrow {BM} = \left( {x + 3\,;\,y + 1\,;\,z} \right)\).
Vì \(\Delta MAB\) vuông tại \(M\) nên \(\overrightarrow {AM} .\overrightarrow {BM} = 0 \Leftrightarrow \left( {x - 3} \right)\left( {x + 3} \right) + \left( {y - 1} \right)\left( {y + 1} \right) + z\left( {z - 2} \right) = 0\)
\[ \Leftrightarrow {x^2} - 9 + {y^2} - 1 + {z^2} - 2z = 0 \Leftrightarrow {x^2} + {y^2} + {\left( {z - 1} \right)^2} = 11\].
\( \Rightarrow M\) thuộc mặt cầu \(\left( S \right)\) có tâm \(I\left( {0\,;\,0\,;\,1} \right)\) và bán kính \(R = \sqrt {11} \).
Nhận xét thấy \(d\left( {I\,,\,\left( P \right)} \right) = \frac{{\left| {0 + 0 + 3.1 - 14} \right|}}{{\sqrt {{1^2} + {1^2} + {3^3}} }} = \sqrt {11} = R\).
\( \Rightarrow \left( P \right)\) tiếp xúc với \(\left( S \right)\) tại \(M\)
\( \Rightarrow M\) là hình chiếu vuông góc của \(I\) trên \(\left( P \right)\)
Vậy \(d\left( {M\,,\,\left( {Oxy} \right)} \right) = \left| 4 \right| = 4\).
Lời giải
Đáp án: khoảng cách từ \(A\)đến mặt phẳng \(\left( \alpha \right)\) bằng \(3\).

Đường thẳng \(d:\frac{{x - 5}}{2} = \frac{{y + 7}}{2} = \frac{{z - 12}}{{ - 1}}\) có một vectơ chỉ phương là \[\overrightarrow u = \left( {2\,;\,2\,;\, - 1} \right)\].
Mặt phẳng \(\left( \alpha \right):x + 2y - 3z - 3 = 0\)có một vectơ pháp tuyến là \[\overrightarrow n = \left( {1\,;\,2\,;\, - 3} \right)\].
Ta có: \[\sin \left( {d\,;\,\left( \alpha \right)} \right) = \frac{{\left| {\overrightarrow {{u_d}} \,.\,\overrightarrow {{n_\alpha }} } \right|}}{{\left| {\overrightarrow {{u_d}} } \right|\,.\,\left| {\overrightarrow {{n_\alpha }} } \right|}} = \frac{{3\sqrt {14} }}{{14}}\].
Gọi \[H\] là hình chiếu vuông góc của \(A\)lên mặt phẳng \(\left( \alpha \right)\).
Khi đó tam giác \(\Delta MAH\) vuông tại \[H\] nên \[\sin \left( {d\,;\,\left( \alpha \right)} \right) = \sin \widehat {AMH} = \frac{{AH}}{{AM}}\].
\[ \Rightarrow AH = AM\,.\,\sin \left( {d\,;\,\left( \alpha \right)} \right) = 3\].
Vậy khoảng cách từ \(A\)đến mặt phẳng \(\left( \alpha \right)\) bằng \(3\).