10 bài tập Tích phân của các hàm số chứa dấu giá trị tuyệt đối có lời giải
32 người thi tuần này 4.6 76 lượt thi 10 câu hỏi 60 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
\(I = \int\limits_0^2 {\left| {x - 1} \right|dx} \)\( = \int\limits_0^1 {\left| {x - 1} \right|dx} + \int\limits_1^2 {\left| {x - 1} \right|dx} \)\( = \int\limits_0^1 {\left( {1 - x} \right)dx} + \int\limits_1^2 {\left( {x - 1} \right)dx} \)
\( = \left. {\left( {x - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2} - x} \right)} \right|_1^2 = 1\).
Lời giải
Đáp án đúng là: D
\(I = \int\limits_0^2 {\left| {{x^2} - 3x + 2} \right|dx} \)\( = \int\limits_0^1 {\left( {{x^2} - 3x + 2} \right)dx} - \int\limits_1^2 {\left( {{x^2} - 3x + 2} \right)dx} \)\( = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + 2x} \right)} \right|_0^1 - \left. {\left( {\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + 2x} \right)} \right|_1^2 = \frac{5}{6} - \left( { - \frac{1}{6}} \right) = 1\).
Lời giải
Đáp án đúng là: D
+) \(\frac{\pi }{4} \le x \le \frac{\pi }{2} \Leftrightarrow \frac{\pi }{2} \le 2x \le \pi \Rightarrow \sin 2x \ge 0\).
+) \(\frac{\pi }{2} \le x \le \frac{{3\pi }}{4} \Leftrightarrow \pi \le 2x \le \frac{{3\pi }}{2} \Rightarrow \sin 2x \le 0\).
Khi đó \(I = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\left| {\sin 2x} \right|dx} \)\( = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\sin 2xdx} - \int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{4}} {\sin 2xdx} \)\( = \left. { - \frac{1}{2}\cos 2x} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} + \left. {\frac{1}{2}\cos 2x} \right|_{\frac{\pi }{2}}^{\frac{{3\pi }}{4}} = 1\).
Lời giải
Đáp án đúng là: B
Từ đáp án ta thấy a ≥ 1.
\(I = \int\limits_{ - 1}^a {\left| {{x^2} - x} \right|dx} \)\( = \int\limits_{ - 1}^0 {\left( {{x^2} - x} \right)dx} - \int\limits_0^1 {\left( {{x^2} - x} \right)dx} + \int\limits_1^a {\left( {{x^2} - x} \right)dx} \)
\( = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0 - \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^a\)\( = \frac{7}{6} + \frac{{{a^3}}}{3} - \frac{{{a^2}}}{2}\).
Theo đề có \(\frac{7}{6} + \frac{{{a^3}}}{3} - \frac{{{a^2}}}{2} = \frac{{11}}{6}\) 2a3 – 3a2 – 4 = 0 (a − 2)(2a2 + a + 2) = 0 a = 2.
Lời giải
Đáp án đúng là: A
Do x3 + x2 – x – 1 = (x – 1)(x + 1)2 ≤ 0, ∀x [−1; 1].
Khi đó \(I = \int\limits_{ - 1}^1 {\left| {{x^3} + {x^2} - x - 1} \right|dx} \)\( = - \int\limits_{ - 1}^1 {\left( {{x^3} + {x^2} - x - 1} \right)dx} = - \left. {\left( {\frac{{{x^4}}}{4} + \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - x} \right)} \right|_{ - 1}^1 = \frac{4}{3}\).
Suy ra a = 4; b = 3. Do đó a + b = 7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.