20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 12. Tích phân có đáp án

43 lượt thi 20 câu hỏi 60 phút

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

I. Nhận biết

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.

Xem đáp án

Câu 2:

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề sai.

Xem đáp án

Câu 3:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\] và \[f'\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.

Xem đáp án

Câu 5:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và \[a,b,c \in \mathbb{R}\] thỏa mãn \[a < b < c\]. Trong các mệnh đề dưới đây, mệnh đề đúng là

Xem đáp án

Câu 6:

II. Thông hiểu

Tính \[I = \int\limits_{ - 1}^0 {{{\left( {2x + 3} \right)}^2}dx} \]

Xem đáp án

Câu 8:

Tính tích phân \[\int\limits_0^1 {{e^{3x + 1}}dx} \] bằng

Xem đáp án

4.6

9 Đánh giá

50%

40%

0%

0%

0%