Câu hỏi:
13/10/2024 4,227Cho \[f\left( x \right),\] \[g\left( x \right)\] là hai hàm liên tục trên đoạn \[\left[ {1;3} \right]\] thỏa mãn \[\int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = 10,\]\[\int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} = 6.\] Tính giá trị \[I = \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \]
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[\left\{ \begin{array}{l}\int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = 10\\\int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} = 6\end{array} \right.\]
\[\left\{ \begin{array}{l}\int\limits_1^3 {f\left( x \right)dx + } 3\int\limits_1^3 {g\left( x \right)dx} = 10\\2\int\limits_1^3 {f\left( x \right)dx - } \int\limits_1^3 {g\left( x \right)dx} = 6\end{array} \right.\]
\[\left\{ \begin{array}{l}\int\limits_1^3 {f\left( x \right)dx = 4} \\\int\limits_1^3 {g\left( x \right)dx} = 2\end{array} \right.\]
Do đó, \[I = \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_1^3 {f\left( x \right)dx + \int\limits_1^3 {g\left( x \right)dx = 6} } \].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 3t} \right)} dt = \frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + C\].
Mà có \[v\left( 0 \right) = 10\] m/s nên ta có C = 10.
Suy ra \[v\left( t \right) = \frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + 10\].
Quãng đường vật đi được trong khoảng thời gian 6 giây kể từ khi vật bắt đầu tăng tốc là \[s\left( t \right) = \int\limits_0^6 {v\left( t \right)dt} = \int\limits_0^6 {\left( {\frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + 10} \right)dt} = 276\] m.
Lời giải
Đáp án đúng là: A
Ta có: \[I = \frac{1}{2}\left[ {\int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} } \right]\]
\[ = \frac{1}{2}\left[ {\int\limits_1^2 {\left( {{x^2} - 2x + 3} \right)dx} + \int\limits_2^3 {\left( {{x^2} - 1} \right)dx} } \right]\]
\[ = \frac{1}{2}\left[ {\left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 3x} \right)} \right|_1^2 + \left. {\left( {\frac{{{x^3}}}{3} - x} \right)} \right|_2^3} \right] = \frac{{23}}{6}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.