Câu hỏi:
13/10/2024 248Cho \[f\left( x \right),\] \[g\left( x \right)\] là hai hàm liên tục trên đoạn \[\left[ {1;3} \right]\] thỏa mãn \[\int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = 10,\]\[\int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} = 6.\] Tính giá trị \[I = \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[\left\{ \begin{array}{l}\int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = 10\\\int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]dx} = 6\end{array} \right.\]
\[\left\{ \begin{array}{l}\int\limits_1^3 {f\left( x \right)dx + } 3\int\limits_1^3 {g\left( x \right)dx} = 10\\2\int\limits_1^3 {f\left( x \right)dx - } \int\limits_1^3 {g\left( x \right)dx} = 6\end{array} \right.\]
\[\left\{ \begin{array}{l}\int\limits_1^3 {f\left( x \right)dx = 4} \\\int\limits_1^3 {g\left( x \right)dx} = 2\end{array} \right.\]
Do đó, \[I = \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_1^3 {f\left( x \right)dx + \int\limits_1^3 {g\left( x \right)dx = 6} } \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
III. Vận dụng
Một vật chuyển động với vận tốc \[10\] m/s thì tăng tốc với gia tốc được tính theo thời gian là \[a\left( t \right) = {t^2} + 3t\]. Tính quãng đường vật đi được trong khoảng thời gian 6 giây kể từ khi vật bắt đầu tăng tốc.
Câu 2:
Biết \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx = \frac{{a + b\sqrt 3 }}{2} + \frac{{5{\pi ^2}}}{c}} \] với \[\left( {a,b,c \in \mathbb{Z}} \right)\]. Khi đó giá trị của \[P = a + 2b + 3c\] là
Câu 3:
Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right)\] và \[f'\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.
Câu 4:
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1,{\rm{ }}x \ge 2\\{x^2} - 2x + 3,{\rm{ }}x < 2\end{array} \right.\]. Tính tích phân \[I = \frac{1}{2}\int\limits_1^3 {f\left( x \right)dx} \] bằng bao nhiêu?
</>
Câu 5:
Vận tốc của một vật chuyển động là \[v\left( t \right) = 3{t^2} + 5{\rm{ }}\left( {m/s} \right)\]. Quãng đường vật đó đi được từ giây thứ 4 đến giây thứ 10 là
Câu 6:
Cho \[\int\limits_{ - 3}^0 {f\left( x \right)dx = - 4} \] và \[\int\limits_{ - 3}^0 {g\left( x \right)dx = - 3} \]. Xét các mệnh đề sau:
a) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = - 7} .\]
b) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = 1} .\]
c) \[\int\limits_{ - 3}^0 { - 3f\left( x \right)dx = 12} .\]
d) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx = - 51} .\]
Số mệnh đề đúng trong các mệnh đề trên là
Câu 7:
Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15\] m/s thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t\] (m/s2). Tính quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!