Cho \[\int\limits_{ - 3}^0 {f\left( x \right)dx = - 4} \] và \[\int\limits_{ - 3}^0 {g\left( x \right)dx = - 3} \]. Xét các mệnh đề sau:
a) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = - 7} .\]
b) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = 1} .\]
c) \[\int\limits_{ - 3}^0 { - 3f\left( x \right)dx = 12} .\]
d) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx = - 51} .\]
Số mệnh đề đúng trong các mệnh đề trên là
A. 1.
B. 2.
C. 3.
D. 4.
Quảng cáo
Trả lời:

Đáp án đúng là: B
Xét các mệnh đề, ta có:
a) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = \int\limits_{ - 3}^0 {f\left( x \right)dx + } } \int\limits_{ - 3}^0 {g\left( x \right)dx} \]
\[ = - 4 + \left( { - 3} \right) = - 7\].
b) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = \int\limits_{ - 3}^0 {f\left( x \right)dx - } } \int\limits_{ - 3}^0 {g\left( x \right)dx} \]
\[ = - 4 - \left( { - 3} \right) = - 1\].
c) \[\int\limits_{ - 3}^0 { - 3f\left( x \right)dx = } - 3\int\limits_{ - 3}^0 {f\left( x \right)dx = - 3.\left( { - 4} \right) = 12.} \]
d) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx = \int\limits_{ - 3}^0 {f\left( x \right)dx + } } 3\int\limits_{ - 3}^0 {g\left( x \right)dx} \]
\[ = - 4 + \left( { - 3} \right).3 = - 13.\]
Vậy có mệnh đề a và c là mệnh đề đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 3t} \right)} dt = \frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + C\].
Mà có \[v\left( 0 \right) = 10\] m/s nên ta có C = 10.
Suy ra \[v\left( t \right) = \frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + 10\].
Quãng đường vật đi được trong khoảng thời gian 6 giây kể từ khi vật bắt đầu tăng tốc là \[s\left( t \right) = \int\limits_0^6 {v\left( t \right)dt} = \int\limits_0^6 {\left( {\frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + 10} \right)dt} = 276\] m.
Câu 2
A. \[\frac{{23}}{6}.\]
B. \[\frac{{10}}{3}.\]
C. \[\frac{{20}}{3}.\]
D. \[\frac{{23}}{3}.\]
Lời giải
Đáp án đúng là: A
Ta có: \[I = \frac{1}{2}\left[ {\int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} } \right]\]
\[ = \frac{1}{2}\left[ {\int\limits_1^2 {\left( {{x^2} - 2x + 3} \right)dx} + \int\limits_2^3 {\left( {{x^2} - 1} \right)dx} } \right]\]
\[ = \frac{1}{2}\left[ {\left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 3x} \right)} \right|_1^2 + \left. {\left( {\frac{{{x^3}}}{3} - x} \right)} \right|_2^3} \right] = \frac{{23}}{6}.\]
Câu 3
A. \[669{\rm{ }}m.\]
B. \[696{\rm{ }}m.\]
C. \[699{\rm{ }}m.\]
D. \[966{\rm{ }}m.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\int\limits_a^b {f'\left( x \right)dx = f\left( b \right) - f\left( a \right).} \]
B. \[\int\limits_a^b {f'\left( x \right)dx = F\left( b \right) - F\left( a \right).} \]
C. \[\int\limits_a^b {F\left( x \right)dx = f\left( b \right) - f\left( a \right).} \]
D. \[\int\limits_a^b {f'\left( x \right)dx = f'\left( b \right) - f'\left( a \right).} \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[I = 6.\]
B. \[I = 4.\]
C. \[I = 8.\]
D. \[I = 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.