Câu hỏi:

13/10/2024 440

I. Nhận biết

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[\int\limits_a^b {f\left( x \right)dx = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right).} \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có: \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 3t} \right)} dt = \frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + C\].

Mà có \[v\left( 0 \right) = 10\] m/s nên ta có C = 10.

Suy ra \[v\left( t \right) = \frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + 10\].

Quãng đường vật đi được trong khoảng thời gian 6 giây kể từ khi vật bắt đầu tăng tốc là \[s\left( t \right) = \int\limits_0^6 {v\left( t \right)dt} = \int\limits_0^6 {\left( {\frac{{{t^3}}}{3} + \frac{3}{2}{t^2} + 10} \right)dt} = 276\] m.

Lời giải

Đáp án đúng là: A

Ta có: \[I = \frac{1}{2}\left[ {\int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} } \right]\]

\[ = \frac{1}{2}\left[ {\int\limits_1^2 {\left( {{x^2} - 2x + 3} \right)dx} + \int\limits_2^3 {\left( {{x^2} - 1} \right)dx} } \right]\]

\[ = \frac{1}{2}\left[ {\left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 3x} \right)} \right|_1^2 + \left. {\left( {\frac{{{x^3}}}{3} - x} \right)} \right|_2^3} \right] = \frac{{23}}{6}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP