(Trả lời ngắn) 17 bài tập Phương trình mặt cầu (có lời giải)
48 người thi tuần này 4.6 125 lượt thi 17 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Đáp án: \(\left( {1\,;\, - 2\,;\,3} \right)\)
Mặt cầu \(\left( S \right):\,{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm là \(I\left( {a\,;\,b\,;\,c} \right)\).
Suy ra, mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) có tâm là \(I\left( {1\,;\, - 2\,;\,3} \right)\).
Lời giải
Đáp án: \(m < 1\) hoặc \(m > 2\).
Điều kiện để phương trình \[{x^2} + {y^2} + {z^2} - 2\left( {m + 2} \right)x + 4my + 19m - 6 = 0\] là phương trình mặt cầu là: \[{\left( {m + 2} \right)^2} + 4{m^2} - 19m + 6 > 0 \Leftrightarrow 5{m^2} - 15m + 10 > 0\]\( \Leftrightarrow m < 1\) hoặc \(m > 2\).
Lời giải
Đáp án: \(\frac{{\sqrt {14} }}{2}\)
Gọi \(\left( S \right)\) là mặt cầu ngoại tiếp tứ diện \(OABC\).
Phương trình mặt cầu \(\left( S \right)\) có dạng: \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Vì \(O\), \(A\), \(B\), \(C\) thuộc \(\left( S \right)\) nên ta có:
\(\left\{ \begin{array}{l}d = 0\\1 + 2a + d = 0\\4 - 4c + d = 0\\9 + 6b + d = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{2}\\b = - \frac{3}{2}\\c = 1\\d = 0\end{array} \right.\).
Vậy bán kính mặt cầu \(\left( S \right)\) là: \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)\( = \sqrt {\frac{1}{4} + \frac{9}{4} + 1} \)\( = \frac{{\sqrt {14} }}{2}\).
Lời giải
Đáp án: \(P = 9\)
Vì mặt cầu tâm \(I\) tiếp xúc với các mặt phẳng tọa độ nên \(d\left( {I,\,\left( {Oyz} \right)} \right) = d\left( {I,\,\left( {Ozx} \right)} \right) = d\left( {I,\,\left( {Oxy} \right)} \right)\) \( \Leftrightarrow \left| a \right| = \left| b \right| = \left| c \right|\) \( \Leftrightarrow \left[ \begin{array}{l}a = b = c\\a = b = - c\\a = - b = c\\a = - b = - c\end{array} \right.\)
Nhận thấy chỉ có trường hợp \(a = - b = c\) thì phương trình \(AI = d\left( {I,\,\left( {Oxy} \right)} \right)\) có nghiệm, các trường hợp còn lại vô nghiệm.
Thật vậy:
Với \(a = - b = c\) thì \(I\left( {a;\, - a;\,a} \right)\)
\(AI = d\left( {I,\,\left( {Oyx} \right)} \right)\)\( \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {a - 1} \right)^2} + {\left( {a - 4} \right)^2} = {a^2}\) \( \Leftrightarrow {a^2} - 6a + 9 = 0\) \( \Leftrightarrow a = 3\)
Khi đó \(P = a - b + c = 9\).
Lời giải
Đáp án: \(m = \sqrt 3 \)
Mặt cầu \(\left( S \right)\): \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = {m^2} + 1\) có tâm \(I\left( {3\,;\,0\,;\,2} \right)\), bán kính \(R = \sqrt {{m^2} + 1} \).
\(\left( S \right)\) tiếp xúc với \(\left( {Oxy} \right)\)\( \Leftrightarrow d\left( {I,\left( {Oxy} \right)} \right) = R\)
\( \Leftrightarrow 2 = \sqrt {{m^2} + 1} \)\( \Leftrightarrow {m^2} = 3\)\( \Leftrightarrow m = \sqrt 3 \) (do \(m\) dương).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



