12 bài tập Một số bài toán hàm hợp liên quan đến tính đơn điệu và cực trị có đáp án
102 người thi tuần này 4.6 355 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có y' = f'(5 – 2x) = −2f'(5 −2x).
Có y' = 0 Û −2f'(5 – 2x) = 0 Û \(\left[ \begin{array}{l}5 - 2x = - 3\\5 - 2x = - 1\\5 - 2x = 1\end{array} \right.\)Û \(\left[ \begin{array}{l}x = 4\\x = 3\\x = 2\end{array} \right.\).
Ta có f'(5 – 2x) < 0 Û \(\left[ \begin{array}{l}5 - 2x < - 3\\ - 1 < 5 - 2x < 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > 4\\2 < x < 3\end{array} \right.\).
f'(5 – 2x) > 0 Û \(\left[ \begin{array}{l}5 - 2x > 1\\ - 3 < 5 - 2x < - 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x < 2\\3 < x < 4\end{array} \right.\).
Bảng biến thiên của hàm số y = f(5 – 2x)
Dựa vào bảng biến thiên ta thấy hàm số y = f(5 – 2x) đồng biến trên khoảng (2; 3) và (4; +∞).
Lời giải
Từ giả thiết, ta có bảng biến thiên của hàm số f(x)
Ta có g'(x) = −f'(3 – x).
Từ bảng biến thiên của hàm số f(x) ta có
g'(x) > 0 f'(3 – x) < 0 \( \Leftrightarrow \left[ \begin{array}{l}3 - x < - 1\\1 < 3 - x < 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > 4\\ - 1 < x < 2\end{array} \right.\).
Như thế ta có bảng biến thiên của hàm số g(x)
Từ bảng biến thiên, ta nhận thấy hàm số g(x) có 1 điểm cực đại.
Lời giải
Đáp án đúng là: B
Có y' = −2x.f'(2 – x2).
Có y' > 0 \[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\1 < 2 - {x^2} < 2\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}2 - {x^2} < 1\\2 - {x^2} > 2\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\ - 1 < x < 1\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}x < - 1\\x > 1\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < x < 1\\x < - 1\end{array} \right.\].
Do đó hàm số đồng biến trên (0; 1). Khi đó a = 0; b = 1 và a + 2b = 2.
Lời giải
Đáp án đúng là: B
Ta có g'(x) = −2f'(3 – 2x).
Có g'(x) > 0 f'(3 – 2x) < 0 1 < 3 – 2x < 2 \( \Leftrightarrow \frac{1}{2} < x < 1\).
Vậy hàm số đã cho đồng biến trên \(\left( {\frac{1}{2};1} \right)\).
Lời giải
Đáp án đúng là: D
Từ đồ thị hàm số trên, ta có bảng biến thiên như sau:
Þ f(x) < 0,∀x ≠ ±2.
Ta có g'(x) = 2f(x).f'(x).
\[g'\left( x \right) = 2f\left( x \right).f'\left( x \right) < 0 \Leftrightarrow f'\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < - 2\end{array} \right.\].
Vậy hàm số đã cho nghịch biến trên khoảng (1; 2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.