Câu hỏi:

10/01/2025 1,090

Cho hàm số y = f'(x) có đồ thị như hình vẽ

A graph of a function

Description automatically generated

Hàm số y = f(2 – x2) đồng biến trên khoảng (a; b) khi đó a + 2b có giá trị là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Có y' = −2x.f'(2 – x2).

Có y' > 0 \[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\1 < 2 - {x^2} < 2\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}2 - {x^2} < 1\\2 - {x^2} > 2\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\ - 1 < x < 1\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}x < - 1\\x > 1\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < x < 1\\x < - 1\end{array} \right.\].

Do đó hàm số đồng biến trên (0; 1). Khi đó a = 0; b = 1 và a + 2b = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có y' = (2x + 2)f'(x2 + 2x) = 0 \( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\f'\left( {{x^2} + 2x} \right) = 0\quad \left( 1 \right)\end{array} \right.\).

Từ bảng biến thiên ta thấy phương trình \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}{x^2} + 2x = a < - 1\quad \quad \quad \left( 2 \right)\\{x^2} + 2x = b \in \left( { - 1;1} \right)\quad \quad \left( 3 \right)\\{x^2} + 2x = c > 1\quad \quad \quad \quad \left( 4 \right)\end{array} \right.\).

Đồ thị hàm số y = x2 + 2x có dạng

Ảnh có chứa biểu đồ, hàng, Sơ đồ

Mô tả được tạo tự động

Từ đồ thị hàm số y = x2 + 2x ta thấy phương trình (2) vô nghiệm; phương trình (3) ; phương trình (4) đều có 2 nghiệm phân biệt.

Do đó y' = 0 có 5 nghiệm đơn phân biệt. Vậy hàm số y = f(x2 + 2x) có 5 điểm cực trị.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có g'(x) = −2f'(3 – 2x).

Có g'(x) > 0 f'(3 – 2x) < 0 1 < 3 – 2x < 2 \( \Leftrightarrow \frac{1}{2} < x < 1\).

Vậy hàm số đã cho đồng biến trên \(\left( {\frac{1}{2};1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP