Câu hỏi:
06/05/2025 41Tính tích phân \(I = \int\limits_{ - 1}^a {\left| {{x^2} - x} \right|dx} \) ta được kết quả \(I = \frac{{11}}{6}\). Khi đó
Quảng cáo
Trả lời:
Đáp án đúng là: B
Từ đáp án ta thấy a ≥ 1.
\(I = \int\limits_{ - 1}^a {\left| {{x^2} - x} \right|dx} \)\( = \int\limits_{ - 1}^0 {\left( {{x^2} - x} \right)dx} - \int\limits_0^1 {\left( {{x^2} - x} \right)dx} + \int\limits_1^a {\left( {{x^2} - x} \right)dx} \)
\( = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0 - \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^a\)\( = \frac{7}{6} + \frac{{{a^3}}}{3} - \frac{{{a^2}}}{2}\).
Theo đề có \(\frac{7}{6} + \frac{{{a^3}}}{3} - \frac{{{a^2}}}{2} = \frac{{11}}{6}\) 2a3 – 3a2 – 4 = 0 (a − 2)(2a2 + a + 2) = 0 a = 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
\(I = \int\limits_0^2 {\left| {x - 1} \right|dx} \)\( = \int\limits_0^1 {\left| {x - 1} \right|dx} + \int\limits_1^2 {\left| {x - 1} \right|dx} \)\( = \int\limits_0^1 {\left( {1 - x} \right)dx} + \int\limits_1^2 {\left( {x - 1} \right)dx} \)
\( = \left. {\left( {x - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2} - x} \right)} \right|_1^2 = 1\).
Lời giải
Đáp án đúng là: D
+) \(\frac{\pi }{4} \le x \le \frac{\pi }{2} \Leftrightarrow \frac{\pi }{2} \le 2x \le \pi \Rightarrow \sin 2x \ge 0\).
+) \(\frac{\pi }{2} \le x \le \frac{{3\pi }}{4} \Leftrightarrow \pi \le 2x \le \frac{{3\pi }}{2} \Rightarrow \sin 2x \le 0\).
Khi đó \(I = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\left| {\sin 2x} \right|dx} \)\( = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\sin 2xdx} - \int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{4}} {\sin 2xdx} \)\( = \left. { - \frac{1}{2}\cos 2x} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} + \left. {\frac{1}{2}\cos 2x} \right|_{\frac{\pi }{2}}^{\frac{{3\pi }}{4}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.