Câu hỏi:

19/03/2025 213 Lưu

Cho hàm số \(y = \frac{{ax + 1}}{{bx - 2}}.\) Tìm a, b để đồ thị hàm số có x = 1 là tiệm cận đứng và \(y = \frac{1}{2}\) là tiệm cận ngang.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

+) b = 0 đồ thị hàm số \(y = \frac{{ax + 1}}{{ - 2}}\) không có tiệm cận.

+) b ≠ 0, tập xác định của hàm số \(y = \frac{{ax + 1}}{{bx - 2}}\) là \[D = \mathbb{R}\backslash \left\{ {\frac{2}{b}} \right\}\].

\[\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ax + 1}}{{bx - 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{a + \frac{1}{x}}}{{b - \frac{2}{x}}} = \frac{a}{b}\].

đồ thị hàm số \(y = \frac{{ax + 1}}{{bx - 2}}\) có tiệm cận ngang là đường thẳng \(y = \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{1}{2} \Leftrightarrow b = 2a\).

\[\mathop {\lim }\limits_{x \to {{\frac{2}{b}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{2}{b}}^ + }} \frac{{ax + 1}}{{bx - 2}} = \left[ \begin{array}{l} + \infty \\ - \infty \end{array} \right.\].

đồ thị hàm số \(y = \frac{{ax + 1}}{{bx - 2}}\) có tiệm cận đứng là đường thẳng\(x = \frac{2}{b} \Rightarrow \frac{2}{b} = 1 \Leftrightarrow b = 2 \Rightarrow a = 1\).

Vậy a = 1; b = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đồ thị hàm số \[y = f\left( x \right) = \frac{{nx + 1}}{{x + m}}\]; (mn ≠ 1) có hai đường tiệm cận x = −m = −1; y =

n = 2 Þ m + n = 3.

Lời giải

Đáp án đúng là: C

Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - \left( {2mx + 3} \right)} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 4}}{{x + 1}} = 0\).

Vậy đường tiệm cận xiên có phương trình y = 2mx + 3.

Đường thẳng này qua điểm M(1; 7) nên 2m.1 + 3 = 7 m = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP