Đề kiểm tra Tính đơn điệu và cực trị của hàm số (có lời giải) - Đề 3
4.6 0 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Từ bảng biến thiên ta thấy mệnh đề: “ Hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\,2} \right)\)” là sai vì hàm số \(y = f\left( x \right)\) không xác định tại \(x = 0\).
Câu 2
Lời giải
Dễ thấy B là phương án đúng.
Câu 3
Lời giải
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow {\left( {1 - x} \right)^2}{\left( {x + 1} \right)^3}\left( {3 - x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1\,\,\,}\\{x = - 1}\\{x = 3\,\,\,}\end{array}} \right.\).
Bảng xét dấu:
Từ bảng xét dấu ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,3} \right)\).
Câu 4
Lời giải
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có:
\(f'\left( x \right) > 0\) ,\(\forall x \in \left( {2; + \infty } \right)\).
\(f'\left( x \right) \le 0\) , \(\forall x \in \left( { - \infty ;2} \right)\) .
Do đó hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {2; + \infty } \right)\)và nghịch biến trên \(\left( { - \infty ;2} \right)\).
Câu 5
Lời giải
Tập xác định: \[D = \mathbb{R}\backslash \left\{ 1 \right\}\].
\[y' = - \frac{2}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\,\forall x \in D\] nên hàm số đã cho nghịch biến trên các khoảng \[\left( { - \infty ;1} \right)\] và \[\left( {1; + \infty } \right)\].
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.