Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Hàm số nào trong bốn hàm số được liệt kê dưới đây không có cực trị?
Quảng cáo
Trả lời:

Hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) có \[y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}} > 0,\,\,\forall x \ne - 1\] nên không có cực trị.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có:
\(f'\left( x \right) > 0\) ,\(\forall x \in \left( {2; + \infty } \right)\).
\(f'\left( x \right) \le 0\) , \(\forall x \in \left( { - \infty ;2} \right)\) .
Do đó hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {2; + \infty } \right)\)và nghịch biến trên \(\left( { - \infty ;2} \right)\).
Lời giải
Ta có \[y = f\left( {2 - {x^2}} \right)\], suy ra \[y' = - 2xf'\left( {2 - {x^2}} \right)\].
Xét \[y' = - 2xf'\left( {2 - {x^2}} \right) > 0\]\[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\1 < 2 - {x^2} < 2\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}2 - {x^2} < 1\\2 - {x^2} > 2\end{array} \right.\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\ - 1 < x < 1,x \ne 0\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\\left[ \begin{array}{l}x < - 1\\x > 1\end{array} \right.\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}0 < x < 1\\x < - 1\end{array} \right.\].
Vậy hàm số đồng biến trên \[\left( { - \infty ; - 1} \right)\] và \[\left( {0;1} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.