Cho hàm số \(f\left( x \right)\), bảng xét dấu của \(f'\left( x \right)\) như sau:

Hàm số \(y = f\left( {5 - 2x} \right)\) đồng biến trên khoảng nào dưới đây?
Cho hàm số \(f\left( x \right)\), bảng xét dấu của \(f'\left( x \right)\) như sau:

Quảng cáo
Trả lời:
Ta có \(y' = f'\left( {5 - 2x} \right)\)\( = - 2f'\left( {5 - 2x} \right)\).
\(y' = 0\)\( \Leftrightarrow - 2f'\left( {5 - 2x} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}5 - 2x = - 3\\5 - 2x = - 1\\5 - 2x = 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 3\\x = 2\end{array} \right.\).
\(f'\left( {5 - 2x} \right) < 0\)\( \Leftrightarrow \left[ \begin{array}{l}5 - 2x < - 3\\ - 1 < 5 - 2x < 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > 4\\2 < x < 3\end{array} \right.\); \(f'\left( {5 - 2x} \right) > 0\)
\( \Leftrightarrow \left[ \begin{array}{l}5 - 2x > 1\\ - 3 < 5 - 2x < - 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x < 2\\3 < x < 4\end{array} \right.\).
Bảng biến thiên của hàm số \(y = f\left( {5 - 2x} \right)\)

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Tập xác định: \[D = \mathbb{R}\].
+Khi \(m = - 1\) ta có \[y = 2{x^3} + 6x + 2 \Rightarrow \]\[y' = 6{x^2} + 6 > 0\] nên hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right)\)
\( \Rightarrow \)a đúng
+Khi \(m = 1\) ta có \[y = 2{x^3} + 4{x^2} + 6x + 6 \Rightarrow \]\[y' = 6{x^2} + 8x + 6\]
Có \(\Delta ' = 16 - 36 = - 20 < 0\)\[ \Rightarrow y' = 6{x^2} + 8x + 6{\rm{ }}\forall x \in \mathbb{R}\] Hàm số không có cực trị khi \(m = 1\)\( \Rightarrow \)b đúng
Ta có: \[y' = 6{x^2} + 4\left( {m + 1} \right)x + 6\].
+ Hàm số \[y = 2{x^3} + 2\left( {m + 1} \right){x^2} + 6x + 4 + 2m\] đồng biến trên \[\mathbb{R}\] khi và chỉ khi
\[y' = 6{x^2} + 4\left( {m + 1} \right)x + 6 \ge 0{\rm{ }}\forall x \in \mathbb{R}\]
\[ \Leftrightarrow \Delta ' = 4{\left( {m + 1} \right)^2} - 36 \le 0 \Leftrightarrow {m^2} + 2m - 8 \le 0 \Leftrightarrow - 4 \le m \le 2.\]
Vậy \(m \in \left[ { - 4;2} \right]\)
Với \(m \in Z \Rightarrow m \in \left\{ { - 4; - 3; - 2; - 1;0;1;2} \right\} \Rightarrow c\) sai
+ có \[y'' = 12x + 4\left( {m + 1} \right)\]. Để hàm số đạt cực tiểu tại \(x = 2\) thì:
\(\left\{ {\begin{array}{*{20}{c}}{y'(2) = 0}\\{y''(2) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{38 + 8m = 0}\\{28 + 4m > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = - \frac{{38}}{8}}\\{m > - 7}\end{array}} \right. \Leftrightarrow m = - \frac{{38}}{8}\)\( \Rightarrow \)d sai
Câu 2
Lời giải
Chọn D
Từ đồ thị hàm số ta thấy hàm số \(y = f\left( x \right) + 2024\) đồng biến khoảng \(\left( {0\,;\,2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
