Câu hỏi:

29/09/2025 52 Lưu

Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau

Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. \(\left( {2; + \infty } \right)\).                                
B. \(\left( { - \infty ; - 2} \right)\).         
C. \(\left( { - 2; + \infty } \right)\).                                
D. \(\left( { - 2;1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Từ bảng biến thiên suy ra hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

Tập xác định: \[D = \mathbb{R}\].

+Khi \(m = - 1\) ta có \[y = 2{x^3} + 6x + 2 \Rightarrow \]\[y' = 6{x^2} + 6 > 0\] nên hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right)\)

\( \Rightarrow \)a đúng

+Khi \(m = 1\) ta có \[y = 2{x^3} + 4{x^2} + 6x + 6 \Rightarrow \]\[y' = 6{x^2} + 8x + 6\]

\(\Delta ' = 16 - 36 = - 20 < 0\)\[ \Rightarrow y' = 6{x^2} + 8x + 6{\rm{ }}\forall x \in \mathbb{R}\] Hàm số không có cực trị khi \(m = 1\)\( \Rightarrow \)b đúng

Ta có: \[y' = 6{x^2} + 4\left( {m + 1} \right)x + 6\].

+ Hàm số \[y = 2{x^3} + 2\left( {m + 1} \right){x^2} + 6x + 4 + 2m\] đồng biến trên \[\mathbb{R}\] khi và chỉ khi

\[y' = 6{x^2} + 4\left( {m + 1} \right)x + 6 \ge 0{\rm{ }}\forall x \in \mathbb{R}\]

\[ \Leftrightarrow \Delta ' = 4{\left( {m + 1} \right)^2} - 36 \le 0 \Leftrightarrow {m^2} + 2m - 8 \le 0 \Leftrightarrow - 4 \le m \le 2.\]

Vậy \(m \in \left[ { - 4;2} \right]\)

Với \(m \in Z \Rightarrow m \in \left\{ { - 4; - 3; - 2; - 1;0;1;2} \right\} \Rightarrow c\) sai

+ có \[y'' = 12x + 4\left( {m + 1} \right)\].   Để hàm số đạt cực tiểu tại \(x = 2\) thì:

\(\left\{ {\begin{array}{*{20}{c}}{y'(2) = 0}\\{y''(2) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{38 + 8m = 0}\\{28 + 4m > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = - \frac{{38}}{8}}\\{m > - 7}\end{array}} \right. \Leftrightarrow m = - \frac{{38}}{8}\)\( \Rightarrow \)d sai

Lời giải

Từ giả thiết, ta có bảng biến thiên của hàm số \[f\left( x \right)\]

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6. Câu 1.	 Cho hàm số \[y = f\left( x \right)\]  (ảnh 1)

Ta có \[g\left( x \right)\, = \,f\left( {3 - x} \right)\]\[ \Rightarrow \]\[g'\left( x \right)\, = \, - f'\left( {3 - x} \right)\].

Từ bảng biến thiên của hàm số\[f\left( x \right)\] ta có

\[g'\left( x \right)\, \ge 0\]\[ \Leftrightarrow f'\left( {3 - x} \right) \le 0\]\[ \Leftrightarrow \left[ \begin{array}{l}3 - x \le  - 1\\1 \le 3 - x \le 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\ - 1 \le x \le 2\end{array} \right.\].

Như thế ta có bảng biến thiên của hàm số \[g\left( x \right)\]

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6. Câu 1.	 Cho hàm số \[y = f\left( x \right)\]  (ảnh 2)

Từ bảng biến thiên, ta nhận thấy hàm số \[g\left( x \right)\] có 1 điểm cực đại.

Đáp số: 1

Câu 3

A. \(\left( {2; + \infty } \right)\).                               
B. \(\left( { - \infty ; - 1} \right)\).         
C. \(\left( { - 1;1} \right)\).                                
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP