Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = {x^4} - 12{x^2} + \left( {m - 2} \right)x\) có ba điểm cực trị?
Quảng cáo
Trả lời:
Chọn D
Ta có:
\(y = {x^4} - 12{x^2} + \left( {m - 2} \right)x\)
\( \Rightarrow y' = 4{x^3} - 24x + m - 2\)
Để hàm số có 3 điểm cực trị thì phương trình \(y' = 4{x^3} - 24x + m - 2 = 0\) có 3 nghiệm phân biệt
\( \Rightarrow m = - 4{x^3} + 24x + 2\left( {\rm{*}} \right)\) có 3 nghiệm phân biệt.
Xét hàm số \(g\left( x \right) = - 4{x^3} + 24x + 2\) ta có \(g'\left( x \right) = - 12{x^2} + 24 = 0 \Leftrightarrow {x^2} = 2 \Leftrightarrow x = \pm \sqrt 2 \)
BBT:

Để phương trình \(\left( {\rm{*}} \right)\) có 3 nghiệm phân biệt thì \( - 16\sqrt 2 + 2 < m < 16\sqrt 2 + 2\).
Mà \(m\) là số nguyên \( \Rightarrow m \in \left\{ { - 20; - 19; \ldots ;23;24} \right\}\) nên có 45 giá trị \(m\) thoả mãn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Tập xác định: \[D = \mathbb{R}\].
+Khi \(m = - 1\) ta có \[y = 2{x^3} + 6x + 2 \Rightarrow \]\[y' = 6{x^2} + 6 > 0\] nên hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right)\)
\( \Rightarrow \)a đúng
+Khi \(m = 1\) ta có \[y = 2{x^3} + 4{x^2} + 6x + 6 \Rightarrow \]\[y' = 6{x^2} + 8x + 6\]
Có \(\Delta ' = 16 - 36 = - 20 < 0\)\[ \Rightarrow y' = 6{x^2} + 8x + 6{\rm{ }}\forall x \in \mathbb{R}\] Hàm số không có cực trị khi \(m = 1\)\( \Rightarrow \)b đúng
Ta có: \[y' = 6{x^2} + 4\left( {m + 1} \right)x + 6\].
+ Hàm số \[y = 2{x^3} + 2\left( {m + 1} \right){x^2} + 6x + 4 + 2m\] đồng biến trên \[\mathbb{R}\] khi và chỉ khi
\[y' = 6{x^2} + 4\left( {m + 1} \right)x + 6 \ge 0{\rm{ }}\forall x \in \mathbb{R}\]
\[ \Leftrightarrow \Delta ' = 4{\left( {m + 1} \right)^2} - 36 \le 0 \Leftrightarrow {m^2} + 2m - 8 \le 0 \Leftrightarrow - 4 \le m \le 2.\]
Vậy \(m \in \left[ { - 4;2} \right]\)
Với \(m \in Z \Rightarrow m \in \left\{ { - 4; - 3; - 2; - 1;0;1;2} \right\} \Rightarrow c\) sai
+ có \[y'' = 12x + 4\left( {m + 1} \right)\]. Để hàm số đạt cực tiểu tại \(x = 2\) thì:
\(\left\{ {\begin{array}{*{20}{c}}{y'(2) = 0}\\{y''(2) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{38 + 8m = 0}\\{28 + 4m > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = - \frac{{38}}{8}}\\{m > - 7}\end{array}} \right. \Leftrightarrow m = - \frac{{38}}{8}\)\( \Rightarrow \)d sai
Câu 2
Lời giải
Chọn D
Từ đồ thị hàm số ta thấy hàm số \(y = f\left( x \right) + 2024\) đồng biến khoảng \(\left( {0\,;\,2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
