Trên mặt đất phả̉ng, người ta dựng một cây cột thẩng cao 6 m vuông góc với mặt đất, có chân cột đặt tại vị trí \(O\) trên mặt đất. Tại một thời điểm, dưới ánh nắng mặt trời, bóng của đỉhh cột dưới mặt đất cách chân cột 3 m về hướng (hướng tạo với hướng nam góc và tạo với hướng đông góc (H.5.32). Chọn hệ trục Oxyz có gó́c toạ độ là O , tia Ox chi hướng nam, tia Oy chi hướng đông, tia Oz chứa cây cột, đơn vị đo là mét. Hãy viết phương trinh đường thẳng chứa tia nắng mặt trời đi qua đỉnh cột tại thời điểm đang xét.
Trên mặt đất phả̉ng, người ta dựng một cây cột thẩng cao 6 m vuông góc với mặt đất, có chân cột đặt tại vị trí \(O\) trên mặt đất. Tại một thời điểm, dưới ánh nắng mặt trời, bóng của đỉhh cột dưới mặt đất cách chân cột 3 m về hướng (hướng tạo với hướng nam góc và tạo với hướng đông góc (H.5.32). Chọn hệ trục Oxyz có gó́c toạ độ là O , tia Ox chi hướng nam, tia Oy chi hướng đông, tia Oz chứa cây cột, đơn vị đo là mét. Hãy viết phương trinh đường thẳng chứa tia nắng mặt trời đi qua đỉnh cột tại thời điểm đang xét.

Quảng cáo
Trả lời:

Đế viết được phương trình đường thẳng chứa tia nắng mặt trời đi qua đỉnh cột tại thời điếm đang xét ta cần xác định tọa độ của A (đỉnh cột) và \({{\rm{A}}^\prime }\) (bóng của đỉnh cột).
Ta có \(A(0;0;6)\).
Hoành độ của điếm A' là
Tung độ của điếm \({{\rm{A}}^\prime }\) là
Do đó \({A^\prime }\left( {\frac{1}{2};\frac{{3\sqrt 3 }}{2};0} \right)\).
Đường thắng chứa tia nắng mặt trời đi qua \({\rm{A}}(0;0;6)\) và có vectơ chỉ phương \(\overrightarrow {A{A^\prime }} = \left( {\frac{1}{2};\frac{{3\sqrt 3 }}{2}; - 6} \right)\) có phương trình là: \(\left\{ {\begin{array}{*{20}{l}}{x = \frac{1}{2}t}\\{y = \frac{{3\sqrt 3 }}{2}t}\\{z = 6 - 6t}\end{array}} \right.\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thắng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (1;0;0),\overrightarrow {{a^\prime }} = (0;0;3)\)
Ta có \(\vec a \cdot \overrightarrow {{a^\prime }} = 1.0 + 0.0 + 0.3 = 0\). Do đó d và d' vuông góc với nhau.
Lời giải
a) Đường thắng \({\Delta _1}\) đi qua \({\rm{A}}(1;0; - 1)\) có vectơ chí phương \(\overrightarrow {{u_1}} = (2; - 1;3)\)
Đường thắng \({\Delta _2}\) đi qua \({\rm{B}}(3; - 1;0)\) có vectơ chí phương \(\overrightarrow {{u_2}} = ( - 1;1;1)\) vi \(\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} = - 2 - 1 + 3 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
b) Ta có \(\overrightarrow {AB} = (2; - 1;1),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 4; - 5;1) \ne \vec 0\), và \(\overrightarrow {AB} \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = - 8 + 5 + 1 = - 2 \ne 0\)
Do đó \({\Delta _1}\) và \({\Delta _2}\) chéo nhau. Vậy nút giao thông trên là nút giao thông khác mức.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.