Trong không gian Oxyz , một viên đạn được bắn ra từ điểm \({\rm{A}}(1;3;4)\) và trong 3 giây, đằu đạn đì với vận tốc không đổi; vectơ vận tốc (trên giây) là \(\vec v = (2;1,6)\). Hỏi viên đạn trên có bắn trúng mục tiêu trong mō̉i tình huống sau hay không?
a) Mục tiêu đặt tại điểm \(M\left( {7;\frac{7}{2};21} \right)\).
b) Mục tiêu đặt tại điểm \(N( - 3;1; - 8)\).
Trong không gian Oxyz , một viên đạn được bắn ra từ điểm \({\rm{A}}(1;3;4)\) và trong 3 giây, đằu đạn đì với vận tốc không đổi; vectơ vận tốc (trên giây) là \(\vec v = (2;1,6)\). Hỏi viên đạn trên có bắn trúng mục tiêu trong mō̉i tình huống sau hay không?
a) Mục tiêu đặt tại điểm \(M\left( {7;\frac{7}{2};21} \right)\).
b) Mục tiêu đặt tại điểm \(N( - 3;1; - 8)\).
Quảng cáo
Trả lời:
Phương trình mô tả quȳ đạo chuyến động của viên đạn là: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = 3 + t}\\{z = 4 + 6t}\end{array}} \right.\)
a) Thay tọa độ điếm M vào phương trình chuyến động, ta có: \(\left\{ {\begin{array}{*{20}{l}}{7 = 1 + 2t}\\{\frac{7}{2} = 3 + t}\\{21 = 4 + 6t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 3}\\{t = \frac{1}{2}}\\{t = \frac{{17}}{6}}\end{array}} \right.} \right.\)
Ta thấy các giá trị t này đều khác nhau do đó điếm M không nẳm trên quỹ đạo chuyến động của viên đạn nên viên đạn không bắn trúng mục tiêu đặt tại điếm M.
b) Thay tọa độ điếm N vào phương trình chuyến động của viên đạn ta có: \(\left\{ {\begin{array}{*{20}{l}}{ - 3 = 1 + 2t}\\{1 = 3 + t}\\{ - 8 = 4 + 6t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = - 2}\\{t = - 2}\\{t = - 2}\end{array}} \right.} \right.\)
Suy ra điếm N nằm trên quỹ đạo chuyến động của viên đạn.
Do đó viên đạn trên có bắn trúng mục tiêu đặt tại điếm N .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đường thắng \({\Delta _1}\) đi qua \({\rm{A}}(1;0; - 1)\) có vectơ chí phương \(\overrightarrow {{u_1}} = (2; - 1;3)\)
Đường thắng \({\Delta _2}\) đi qua \({\rm{B}}(3; - 1;0)\) có vectơ chí phương \(\overrightarrow {{u_2}} = ( - 1;1;1)\) vi \(\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} = - 2 - 1 + 3 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
b) Ta có \(\overrightarrow {AB} = (2; - 1;1),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 4; - 5;1) \ne \vec 0\), và \(\overrightarrow {AB} \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = - 8 + 5 + 1 = - 2 \ne 0\)
Do đó \({\Delta _1}\) và \({\Delta _2}\) chéo nhau. Vậy nút giao thông trên là nút giao thông khác mức.
Lời giải
Đường thắng d và d' lần lượt có vectơ chỉ phương là \(\vec a = (1;0;0),\overrightarrow {{a^\prime }} = (0;0;3)\)
Ta có \(\vec a \cdot \overrightarrow {{a^\prime }} = 1.0 + 0.0 + 0.3 = 0\). Do đó d và d' vuông góc với nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.