Câu hỏi:

10/08/2025 17 Lưu

Trên một máy khoan bàn đã thiết lập sẵn một hệ toạ độ. Nêu nhận xét về vị trí giữa trục \(d\) của mũi khoan và trục \({d^\prime }\) của giá đỡ có phương trình lần lượt là: \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 1}\\{z = 1 + t}\end{array}} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = 20}\\{z = 5 + 5{t^\prime }.}\end{array}} \right.\)

Trên một máy khoan bàn đã thiết lập sẵn một hệ toạ độ. Nêu nhận xét về vị trí giữa trục d của mũi khoan  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng d đi qua \({\rm{M}}(1;1;1)\) và có vectơ chỉ phương \(\vec a = (0;0;1)\)

Đường thẳng d' đi qua \({\rm{N}}(10;20;5)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }}  = (0;0;5) = 5\vec a\)

Thay tọa độ điểm M vào phương trình đường thẳng d ta được

\(\left\{ {\begin{array}{*{20}{l}}{1 = 10}\\{1 = 20}\\{1 = 5 + 5{t^\prime }}\end{array}{\rm{ (vô lí)}}{\rm{. Suy ra }}M \notin d.} \right.\)Vậy d // d'.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đường thắng \({\Delta _1}\) đi qua \({\rm{A}}(1;0; - 1)\) có vectơ chí phương \(\overrightarrow {{u_1}}  = (2; - 1;3)\)

Đường thắng \({\Delta _2}\) đi qua \({\rm{B}}(3; - 1;0)\) có vectơ chí phương \(\overrightarrow {{u_2}}  = ( - 1;1;1)\) vi \(\overrightarrow {{u_1}}  \cdot \overrightarrow {{u_2}}  =  - 2 - 1 + 3 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.

b) Ta có \(\overrightarrow {AB}  = (2; - 1;1),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 4; - 5;1) \ne \vec 0\), và \(\overrightarrow {AB}  \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] =  - 8 + 5 + 1 =  - 2 \ne 0\)

Do đó \({\Delta _1}\) và \({\Delta _2}\) chéo nhau. Vậy nút giao thông trên là nút giao thông khác mức.

Lời giải

Đường thẳng d và d' lần lượt có vectơ chí phương là \(\overrightarrow {{a_1}}  = (0;0;1),\overrightarrow {{a_2}}  = (0;1;0)\)

Ta có \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương với nhau nên d và d' chéo nhau hoặc cắt nhau.

Ta xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{0 = 20}\\{0 = {t^\prime }}\\{50 + t = 50}\end{array}} \right.\) (vô nghiệm).

Vậy \(d\) và d' chéo nhau.