Câu hỏi:

26/10/2025 14 Lưu

Trên đoạn \(\left[ {1;5} \right]\), hàm số \(y = x + \frac{4}{x}\) đạt giá trị nhỏ nhất tại điểm

A. \(x = 5\).                      
B. \(x = 2\).                     
C. \(x = 1\).                                    
D. \(x = 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(y' = 1 - \frac{4}{{{x^2}}} \Rightarrow y' = 0 \Leftrightarrow {x^2} = 4 \Rightarrow x = 2\) (vì \(x \in \left( {1;5} \right)\)).

Khi đó \(y\left( 1 \right) = 5\), \(y\left( 2 \right) = 4\)\(y\left( 5 \right) = \frac{{29}}{5}\).

Do đó \(\mathop {\min }\limits_{\left[ {1;5} \right]} y = 4\) tại \(x = 2\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) với \(x \in (0; + \infty )\).

Ta có: \(f'(x) = \frac{{{x^2} - 9}}{{{x^2}}}\). Khi đó, \(f'(x) = 0 \Leftrightarrow x = 3\) (do \(\left. {x > 0} \right)\).

Ngoài ra \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \).

Bảng biến thiên của hàm số như sau:

Phần III. Trắc nghiệm trả lời ngắn Câu 1. Tìm giá trị nhỏ nhất của hàm số \(f(x) = \frac{{{x^2} + 9}}{x}\) trên khoảng \((0; + \infty )\). (ảnh 1)

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{(0; + \infty )} f(x) = 6\) tại \(x = 3\) và hàm số \(f(x)\) không có giá trị lớn nhất.

Trả lời: 6.

Câu 2

A. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\].                                                 
B. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{{{e^5}}}{2}\].                 
C. \[\mathop {\min }\limits_\mathbb{R} f\left( x \right) = {e^5}\].                                                                    
D. Không tồn tại.

Lời giải

Ta có: \(f'\left( x \right) = \left( {2x - 5} \right){e^{2x}}\).

\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\).

Bảng biến thiên của hàm số:

Tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = \left( {x - 3} \right){e^{2x}}\). A. \[\mathop {\min }\limits_\mathbb{R} f\le (ảnh 1)

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = - \frac{{{e^5}}}{2}\). Chọn A.