Đề cương ôn tập cuối kì 1 Toán 12 Kết nối tri thức cấu trúc mới (có tự luận) có đáp án - Tự luận
41 người thi tuần này 4.6 465 lượt thi 13 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
210 câu Bài tập Tích phân cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có: \(f'(x) = 3{x^2} - 12x + 9\);
\(f'(x) = 0 \Leftrightarrow x = 1\) hoặc \({\rm{ }}x = 3.\)
Bảng biến thiên của hàm số trên nửa khoảng \([ - 1; + \infty )\):

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{_{[ - 1; + \infty )}} f(x) = f( - 1) = - 17\) và hàm số không có giá trị lớn nhất trên \([ - 1; + \infty ).\)
Lời giải
Tập xác định: \(D = \left[ { - 2;2} \right]\).
Ta có: \(y' = \frac{{ - x}}{{\sqrt {4 - {x^2}} }}\) \( \Rightarrow y' = 0 \Leftrightarrow x = 0 \in \left( { - 2;2} \right)\).
Ta có: \(\left\{ \begin{array}{l}y\left( { - 2} \right) = y\left( 2 \right) = 0\\y\left( 0 \right) = 2\end{array} \right. \Rightarrow \mathop {\max }\limits_{\left[ { - 2;\,2} \right]} y = 2\).
Lời giải
a) \(y = \frac{{2x + 1}}{{x - 1}}\)
1) Tập xác định: \(\mathbb{R}\backslash \{ 1\} \).
2) Sự biến thiên
Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
\(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty ,\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \). Do đó, đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số\(\mathop {\lim }\limits_{x \to + \infty } y = 2,\mathop {\lim }\limits_{x \to - \infty } y = 2\). Do đó, đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.
- \(y' = \frac{{ - 3}}{{{{(x - 1)}^2}}} < 0\) với mọi \(x \ne 1\).
Hàm số nghịch biến trên mỗi khoảng \(( - \infty ;1)\) và \((1; + \infty )\).
Hàm số không có cực trị.
- Bảng biến thiên:

3) Đồ thị
- Giao điểm của đồ thị với trục tung: \((0; - 1)\).
- Giao điểm của đồ thị với trục hoành: \(\left( { - \frac{1}{2};0} \right)\).
Đồ thị hàm số đi qua các điểm \((0; - 1),\left( { - \frac{1}{2};0} \right)\), \(( - 2;1),(2;5),\left( {\frac{5}{2};4} \right)\) và \((4;3)\).
Đồ thị hàm số nhận giao điểm \(I(1;2)\) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) được cho ở Hình.

b) \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\).
1) Tập xác định: \(\mathbb{R}\backslash \{ 1\} \).
2) Sự biến thiên
- Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta viết hàm số đã cho dưới dạng: \(y = x + \frac{1}{{x - 1}}\).
\(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = - \infty .\)\(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty ,\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \).
Do đó, đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } (y - x) = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x - 1}} = 0,\mathop {\lim }\limits_{x \to - \infty } (y - x) = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x - 1}} = 0\).
Do đó, đường thẳng \(y = x\) là tiệm cận xiên của đồ thị hàm số
\(y' = \frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}}\)
\(y' = 0 \Leftrightarrow {x^2} - 2x = 0 \Leftrightarrow x = 0\) hoặc \({\rm{ }}x = 2.{\rm{ }}\)
Hàm số đồng biến trên mỗi khoảng \(( - \infty ;0)\) và \((2; + \infty )\); nghịch biến trên mỗi khoảng \((0;1)\) và \((1;2).\)
Hàm số đạt cực đại tại ; đạt cực tiểu tại \(x = 2,{y_{CT}} = 3\).
Bảng biến thiên:

3) Đồ thị
- Giao điểm của đồ thị với trục tung: \((0; - 1)\).
- Đồ thị hàm số không cắt trục hoành.
- Đồ thị hàm số đi qua các điểm \((0; - 1),\left( {\frac{1}{2}; - \frac{3}{2}} \right)\), \(\left( { - 1; - \frac{3}{2}} \right),(2;3),\left( {\frac{3}{2};\frac{7}{2}} \right)\) và \(\left( {3;\frac{7}{2}} \right)\).
- Đồ thị nhận giao điểm \(I(1;1)\) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\) được cho ở Hình.

Lời giải
a) Ban đầu bình xăng có \(V(0) = 4\) lít xăng.
b) Sau khi bơm 30s, ta có \(V(0,5) = 41,5\)lít.
c) Ta có: \(V'(t) = 300\left( {2t - 3{t^2}} \right)\); Có \(V''\left( t \right) = 300\left( {2 - 6t} \right)\)
\(V'' = 0 \Leftrightarrow t = \frac{1}{3}\).
Có \(V'\left( 0 \right) = 0;V'\left( {\frac{1}{3}} \right) = 100;V'\left( {\frac{1}{2}} \right) = 75\).
Vậy tốc độ tăng thể tích vào thời điểm \(t = \frac{1}{3}\) giây là lớn nhất.
Lời giải
Ta có \(v = s' = - \frac{3}{2}{t^2} + 12t = - \frac{3}{2}\left( {{t^2} - 8t + 16} \right) + 24 = 24 - \frac{3}{2}{\left( {t - 4} \right)^2} \le 24\).
Vậy \(\mathop {\max }\limits_{\left[ {0;\,6} \right]} v\left( t \right) = 24\,\left( {{\rm{m/s}}} \right)\) tại thời điểm \(t = 4\) (giây).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

