Cho hình chóp tứ giác đều \[S.ABCD\]có độ dài tất cả các cạnh bằng \(a\). Tính các tích vô hướng sau:
a) \(\overrightarrow {AS} .\overrightarrow {BC} \)
b) \(\overrightarrow {AS} .\overrightarrow {AC} \).
Cho hình chóp tứ giác đều \[S.ABCD\]có độ dài tất cả các cạnh bằng \(a\). Tính các tích vô hướng sau:
a) \(\overrightarrow {AS} .\overrightarrow {BC} \)
b) \(\overrightarrow {AS} .\overrightarrow {AC} \).

Quảng cáo
Trả lời:

a) Tam giác \(SAD\) có ba cạnh bằng nhau nên là tam giác đều suy ra \(\widehat {SAD} = 60^\circ \).
Tứ giác \(ABCD\) là hình vuông nên \(\overrightarrow {AD} = \overrightarrow {BC} \) suy ra \(\left( {\overrightarrow {AS} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AS} ,\overrightarrow {AD} } \right) = \widehat {SAD} = 60^\circ \).
Do đó \(\overrightarrow {AS} .\overrightarrow {BC} = \left| {\overrightarrow {AS} } \right|.\left| {\overrightarrow {BC} } \right|.\cos 60^\circ = a.a.\frac{1}{2} = \frac{{{a^2}}}{2}\).
b) Tứ giác \[ABCD\] là hình vuông có độ dài mỗi cạnh là \(a\) nên độ dài đường chéo \[AC\] là \(\sqrt 2 a\).
Tam giác \[SAC\] có \(SA = SC = a\) và \(AC = \sqrt 2 a\) nên tam giác \[SAC\] vuông cân tại \(S\)
Suy ra \(\widehat {SAC} = 45^\circ \), do đó \(\overrightarrow {AS} .\overrightarrow {AC} = \left| {\overrightarrow {AS} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \widehat {SAC} = a.\sqrt 2 a.\frac{{\sqrt 2 }}{2} = {a^2}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ban đầu bình xăng có \(V(0) = 4\) lít xăng.
b) Sau khi bơm 30s, ta có \(V(0,5) = 41,5\)lít.
c) Ta có: \(V'(t) = 300\left( {2t - 3{t^2}} \right)\); Có \(V''\left( t \right) = 300\left( {2 - 6t} \right)\)
\(V'' = 0 \Leftrightarrow t = \frac{1}{3}\).
Có \(V'\left( 0 \right) = 0;V'\left( {\frac{1}{3}} \right) = 100;V'\left( {\frac{1}{2}} \right) = 75\).
Vậy tốc độ tăng thể tích vào thời điểm \(t = \frac{1}{3}\) giây là lớn nhất.
Lời giải
Số cá giống mà ông thanh đã thả trong vụ vừa qua là \(50.20 = 1000\left( {{\rm{con}}} \right)\)
Khối lượng trung bình mỗi con cá thành phần trong vụ vừa qua là: \(1500:1000 = 1,5\left( {{\rm{kg}}} \right)\).
Gọi số cá giống cần thả ít đi trong vụ này là: \(x\left( {{\rm{con}}} \right),\left( {x > 0} \right)\)
Theo đề, giảm 8 con thì mỗi con tăng thêm \(0,5\;{\rm{kg/con}}\)
Vậy giảm \(x\) con thì mỗi con tăng thêm \(0,0625x{\rm{ kg/con}}\).
Tổng số lượng cá thu được ở vụ này:
\(F\left( x \right) = \left( {1000 - x} \right)\left( {1,5 + 0,0625x} \right) = - 0,0625{x^2} + 61x + 1500\).
Bài toán trở thành tìm x để \(F\left( x \right)\) đạt giá trị lớn nhất.
Ta có:\(F'\left( x \right) = - 0,125x + 61\)
\(F'\left( x \right) = 0 \Leftrightarrow - 0,125x + 61 = 0 \Leftrightarrow x = 488\)
Bảng biến thiên

Vậy ông thanh phải thả số cá giống trong vụ này là: \(1000 - 488 = 512\;{\rm{con}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.