Câu hỏi:

26/10/2025 32 Lưu

Người ta bơm xăng vào bình xăng của một xe ô tô. Biết rằng thể tích \(V\) (lít) của lượng xăng trong bình xăng tính theo thời gian bơm xăng \(t\) (phút) được cho bởi công thức

\(V(t) = 300\left( {{t^2} - {t^3}} \right) + 4{\rm{; }}0 \le t \le 0,5.\)

a) Ban đầu trong bình xăng có bao nhiêu lít xăng?

b) Sau khi bơm 30 giây thì bình xăng đầy. Hỏi dung tích của bình xăng trong xe là bao nhiêu lít?

c) Khi xăng chảy vào bình xăng, gọi \(V'(t)\) là tốc độ tăng thể tích tại thời điểm \(t\) với \(0 \le t \le 0,5\). Xăng chảy vào bình xăng ở thời điểm nào có tốc độ tăng thể tích là lớn nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ban đầu bình xăng có \(V(0) = 4\) lít xăng.

b) Sau khi bơm 30s, ta có \(V(0,5) = 41,5\)lít.

c) Ta có: \(V'(t) = 300\left( {2t - 3{t^2}} \right)\); Có \(V''\left( t \right) = 300\left( {2 - 6t} \right)\)

\(V'' = 0 \Leftrightarrow t = \frac{1}{3}\).

\(V'\left( 0 \right) = 0;V'\left( {\frac{1}{3}} \right) = 100;V'\left( {\frac{1}{2}} \right) = 75\).

Vậy tốc độ tăng thể tích vào thời điểm \(t = \frac{1}{3}\) giây là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số cá giống mà ông thanh đã thả trong vụ vừa qua là \(50.20 = 1000\left( {{\rm{con}}} \right)\)

Khối lượng trung bình mỗi con cá thành phần trong vụ vừa qua là: \(1500:1000 = 1,5\left( {{\rm{kg}}} \right)\).

Gọi số cá giống cần thả ít đi trong vụ này là: \(x\left( {{\rm{con}}} \right),\left( {x > 0} \right)\)

Theo đề, giảm 8 con thì mỗi con tăng thêm \(0,5\;{\rm{kg/con}}\)

Vậy giảm \(x\) con thì mỗi con tăng thêm \(0,0625x{\rm{ kg/con}}\).

Tổng số lượng cá thu được ở vụ này:

\(F\left( x \right) = \left( {1000 - x} \right)\left( {1,5 + 0,0625x} \right) = - 0,0625{x^2} + 61x + 1500\).

Bài toán tr thành tìm x để \(F\left( x \right)\) đạt giá trị lớn nhất.

Ta có:\(F'\left( x \right) = - 0,125x + 61\)

\(F'\left( x \right) = 0 \Leftrightarrow - 0,125x + 61 = 0 \Leftrightarrow x = 488\)

Bảng biến thiên

Ông Thanh nuôi cá chim ở một cái ao có diện tích là \(50\;{{\rm{ (ảnh 1)

Vậy ông thanh phải thả số cá giống trong vụ này là: \(1000 - 488 = 512\;{\rm{con}}\).

Lời giải

a) Ta có \(\overrightarrow {BC} = (1;1;1)\).

Gọi \(H(x;y;z)\) là chân đường cao của tam giác \(ABC\) kẻ từ \(A\).

Suy ra \(\overrightarrow {BH} = (x - 1;y - 2;z - 4)\).

\(\overrightarrow {BH} \) cùng phương với \(\overrightarrow {BC} \), do đó \(x - 1 = t;y - 2 = t;z - 4 = t\), suy ra \(H(1 + t;2 + t;4 + t)\).

Ta có \(\overrightarrow {AH} = \left( {{x_H} - {x_A};{y_H} - {y_A};{z_H} - {z_A}} \right) = (t - 6;t - 1;t + 1)\).

\(\overrightarrow {AH} \bot \overrightarrow {BC} \Leftrightarrow \overrightarrow {AH} \cdot \overrightarrow {BC} = 0 \Leftrightarrow t - 6 + t - 1 + t + 1 = 0 \Leftrightarrow 3t = 6 \Leftrightarrow t = 2\).

Suy ra \(H(3;4;6)\).

b) Ta có \(\overrightarrow {AB} = ( - 6; - 1;1);\overrightarrow {AC} = ( - 5;0;2)\), suy ra

\(AB = \sqrt {{{( - 6)}^2} + {{( - 1)}^2} + {1^2}} = \sqrt {38} ;AC = \sqrt {{{( - 5)}^2} + {0^2} + {2^2}} = \sqrt {29} .\)

c) \(\cos A = \frac{{\overrightarrow {AB} \cdot \overrightarrow {AC} }}{{AB \cdot AC}} = \frac{{30 + 0 + 2}}{{\sqrt {38} \cdot \sqrt {29} }} = \frac{{32}}{{\sqrt {38 \cdot 29} }}\), suy ra \(\widehat {{\mkern 1mu} A{\mkern 1mu} } \approx 15,43^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP