Số lượng sản phẩm bán được của một cửa hàng quần áo trong \(t\) (tháng) được cho bởi công thức: \(S\left( t \right) = 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right)\) với \(t \ge 1\). Xem \(y = S\left( t \right)\) là một hàm số xác định trên nửa khoảng \(\left[ {1; + \infty } \right)\), biết rằng tiệm cận ngang của đồ thị hàm số có dạng \(\frac{a}{b}\,,\,a\,,\,b \in {\mathbb{N}^*}\,,\,\left( {a\,,\,b} \right) = 1\). Tính \(P = a - 2b\).
Số lượng sản phẩm bán được của một cửa hàng quần áo trong \(t\) (tháng) được cho bởi công thức: \(S\left( t \right) = 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right)\) với \(t \ge 1\). Xem \(y = S\left( t \right)\) là một hàm số xác định trên nửa khoảng \(\left[ {1; + \infty } \right)\), biết rằng tiệm cận ngang của đồ thị hàm số có dạng \(\frac{a}{b}\,,\,a\,,\,b \in {\mathbb{N}^*}\,,\,\left( {a\,,\,b} \right) = 1\). Tính \(P = a - 2b\).
Quảng cáo
Trả lời:
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } S\left( t \right) = \mathop {\lim }\limits_{x \to + \infty } 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right) = 200.\frac{2}{3} = \frac{{400}}{3}\) \( \Rightarrow a = 400\,;\,b = 3\).
Vậy \(P = a - 2b = 400 - 6 = 394\).
Trả lời: 394.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + 3}}{{x - 2}} = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} + 3}}{{x - 2}} = - \infty \). Suy ra \(x = 2\) là tiệm cận đứng của đồ thị hàm số.
Có \(y = x + 2 + \frac{7}{{x - 2}}\).
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{7}{{x - 2}} = 0\). Do đó \(y = x + 2\) là tiệm cận xiên của đồ thị hàm số.
Đường thẳng \({d_2}:y = x + 2\) cắt trục \(Oy\) tại \(A\left( {0;2} \right)\).
Đường thẳng \({d_1}:x = 2\) cắt \({d_2}:y = x + 2\) tại \(B\left( {2;4} \right)\).
Đường thẳng \({d_1}:x = 2\) cắt trục \(Ox\) tại \(C\left( {2;0} \right)\).
Do đó hai đường tiệm cận của đồ thị \(\left( C \right)\) cùng với hai trục tọa độ tạo thành một hình thang vuông \(OABC\).

Khi đó \({S_{OABC}} = \frac{{\left( {OA + BC} \right).OC}}{2} = 6\).
Trả lời: 6.
Lời giải
\[\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{{x^2} + 2x + 5}}{{x + 1}} = - \infty \]; \[\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} + 2x + 5}}{{x + 1}} = + \infty \] nên \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.
\[y = \frac{{{x^2} + 2x + 5}}{{x + 1}} = x + 1 + \frac{4}{{x + 1}}\].
Có \[\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{4}{{x + 1}} = 0\] nên \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
Suy ra giao điểm của hai đường tiệm cận là \(\left( { - 1;0} \right)\). Do đó \(a + b = - 1\).
Trả lời: −1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
