Câu hỏi:

26/10/2025 30 Lưu

Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của 3 lực \[\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \] có độ lớn lần lượt là \(24N,12N,6N\). Biết góc tạo bởi 2 lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) là 120° và lực thứ ba vuông góc với hai lực đầu tiên.

Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng củ (ảnh 1)

a) \(\overrightarrow {BO} + \overrightarrow {BA} = \overrightarrow {BD} \).

b) \(\overrightarrow {OE} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \).

c) Độ dài của vectơ \(\overrightarrow {OD} \)\(\left| {\overrightarrow {OD} } \right| = 12\sqrt 7 \).

d) Độ lớn hợp lực tác dụng vào vật \(O\)\(6\sqrt {13} \) N.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \(OADB\) là hình bình hành nên \(\overrightarrow {BO} + \overrightarrow {BD} = \overrightarrow {BA} \) (quy tắc hình bình hành).

b) Có \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} ;\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OE} \).

Do đó \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \).

c) Vì \(OADB\) là hình bình hành và \(\widehat {BOA} = 120^\circ \Rightarrow \widehat {OBD} = 60^\circ \).

Xét \(\Delta OBD\)\(OD = \sqrt {O{B^2} + B{D^2} - 2.OB.BD.\cos 60^\circ } = \sqrt {{{24}^2} + {{12}^2} - 2.24.12.\cos 60^\circ } = 12\sqrt 3 \) N.

d) Ta có \(\Delta OCE\) vuông tại \(C\), ta có \(OE = \sqrt {O{C^2} + C{E^2}} = \sqrt {{6^2} + {{\left( {12\sqrt 3 } \right)}^2}} = 6\sqrt {13} \) N.

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện đều \(ABCD\) có độ dài cạnh bằng 1, gọi \(M\) là trung điểm cạnh \(CD\). Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AM} \) bằng bao nhiêu? (ảnh 1)

\(ABCD\) là tứ diện đều cạnh bằng 1 nên \(BM = AM = \frac{{\sqrt 3 }}{2}\).Xét \(\Delta ABM\)\(\cos \widehat {BAM} = \frac{{A{B^2} + A{M^2} - B{M^2}}}{{2.AB.AM}} = \frac{{{1^2} + {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}}{{2.1.\frac{{\sqrt 3 }}{2}}} = \frac{1}{{\sqrt 3 }}\).\(\overrightarrow {AB} .\overrightarrow {AM} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AM} } \right) = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \widehat {BAM} = 1.\frac{{\sqrt 3 }}{2}.\frac{1}{{\sqrt 3 }} = 0,5\).

Trả lời: 0,5.

Câu 2

A. \(30^\circ \).               
B. \(45^\circ \).               
C. \(60^\circ \).                    
D. \(90^\circ \).

Lời giải

Trong không gian, cho hình lập phương \(ABCD.A'B'C'D'\). Góc giữa hai vectơ \(\overrightarrow {BD} \,,\,\overrightarrow {B'C} \)bằng  A. \(30^\circ \).	B. \(45^\circ \).	C. \(60^\circ \).	D. \(90^\circ \). (ảnh 1)

Ta có: \(\overrightarrow {BD} \, = \,\,\overrightarrow {B'D'} \).

Do đó,\(\left( {\overrightarrow {BD} \,,\,\overrightarrow {B'C} } \right)\, = \,\left( {\overrightarrow {B'D'} \,,\,\overrightarrow {B'C} } \right)\, = \widehat {\,D'B'C}\)

\(B'C = \,CD'\, = \,D'B'\)nên tam giác \(B'CD'\)là tam giác đều.

Suy ra \(\widehat {\,D'B'C}\, = \,60^\circ \).

Vậy \(\left( {\overrightarrow {BD} \,,\,\overrightarrow {B'C} } \right)\, = \,60^\circ \). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\overrightarrow {NM} \].                               
B. \[\overrightarrow {MN} \].                                         
C.\[\overrightarrow {NP} \].                                     
D. \[\overrightarrow {PN} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP