Trong không gian với hệ trục tọa độ Oxyz, cho \(\vec a = \left( {2; - 3;3} \right)\), \(\vec b = \left( {0;2; - 1} \right)\), \(\vec c = \left( {3; - 1;5} \right)\). Tìm tọa độ của vectơ \(\vec u = 2\vec a + 3\vec b - 2\vec c\).
Quảng cáo
Trả lời:
Ta có: \(2\vec a = \left( {4; - 6;6} \right)\), \(3\vec b = \left( {0;6; - 3} \right)\), \( - 2\vec c = \left( { - 6;2; - 10} \right)\) \( \Rightarrow \vec u = 2\vec a + 3\vec b - 2\vec c = \left( { - 2;2; - 7} \right)\). Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow u = \left( {2;\, - 2;\,1} \right)\)
Khi đó \(\left| {\overrightarrow u } \right| = \sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} = 3\) và \(\left| {\overrightarrow v } \right| = \sqrt {{m^2} + {2^2} + {{\left( {m + 1} \right)}^2}} = \sqrt {2{m^2} + 2m + 5} \)
Do đó \(\left| {\overrightarrow u } \right| = \left| {\overrightarrow v } \right| \Leftrightarrow 9 = 2{m^2} + 2m + 5\)\( \Leftrightarrow {m^2} + m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 2\end{array} \right.\) .
Vậy có hai giá trị của \(m\).
Trả lời: 2.
Câu 2
Lời giải
Ta có: \(\overrightarrow {AB} = \left( { - 1;\;0;\;1} \right),\overrightarrow {AC} = \left( {1;\;1;\;1} \right)\)\( \Rightarrow \left( { - 1} \right).1 + 0.1 + 1.1 = 0 \Rightarrow AB \bot AC\).
Nên diện tích tam giác \(ABC\) là \(S = \frac{1}{2}AB.AC = \frac{{\sqrt 6 }}{2}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
