Câu hỏi:

26/10/2025 6 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Bảng sau biểu diễn mẫu số liệu về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua trà sữa ở một cửa hàng trong một buổi sáng.

Nhóm

\(\left[ {30;40} \right)\)

\(\left[ {40;50} \right)\)

\(\left[ {50;60} \right)\)

\(\left[ {60;70} \right)\)

\(\left[ {70;80} \right)\)

Số khách hàng

5

8

25

20

2

a) Số trung bình cộng của mẫu số liệu trên là 56 (nghìn đồng).

b) Khoảng biến thiên của mẫu số liệu trên là 50 (nghìn đồng).

c) Khoảng tứ phân vị của mẫu số liệu trên là 12,7 (nghìn đồng).

d) Phương sai của mẫu số liệu trên lớn hơn 93 (nghìn đồng).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng sau:

Nhóm

Giá trị đại diện

Tần số

\(\left[ {30;40} \right)\)

35

5

\(\left[ {40;50} \right)\)

45

8

\(\left[ {50;60} \right)\)

55

25

\(\left[ {60;70} \right)\)

65

20

\(\left[ {70;80} \right)\)

75

2

 

 

\(n = 60\)

a) Số trung bình cộng của mẫu số liệu trên là:

\(\overline x = \frac{{35.5 + 45.8 + 55.25 + 65.20 + 75.2}}{{60}} = 56\)(nghìn đồng).

b) Khoảng biến thiên của mẫu số liệu trên là: \(80 - 30 = 50\)(nghìn đồng).

c) Nhóm chứa tứ phân vị thứ nhất là \(\left[ {50;60} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 50 + \frac{{\frac{{60}}{4} - 13}}{{25}}.10 = 50,8\)(nghìn đồng).

Nhóm chứa tứ phân vị thứ ba là \(\left[ {60;70} \right)\).

Tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 60 + \frac{{\frac{{3.60}}{4} - 38}}{{20}}.10 = 63,5\)(nghìn đồng).

Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 63,5 - 50,8 = 12,7\)(nghìn đồng).

d) Phương sai của mẫu số liệu trên là:

\({s^2} = \frac{{5{{\left( {35 - 56} \right)}^2} + 8{{\left( {45 - 56} \right)}^2} + 25{{\left( {55 - 56} \right)}^2} + 20{{\left( {65 - 56} \right)}^2} + 2{{\left( {75 - 56} \right)}^2}}}{{60}} = \frac{{277}}{3} \approx 92,3\)(nghìn đồng).

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   c) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(s = 161,4\).               
B. \(s = 14,48\).                                                            
C. \(s = 8,2\).                   
D. \(s = 3,85\)

Lời giải

Ta có bảng sau

Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau:   Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\).	B. \(s = 14,48\).                   	C. \(s = 8,2\).	D. \(s = 3,85\) (ảnh 2)

Ta có chiều cao trung bình:

\[\overline x = \frac{1}{{500}}\left( {152.25 + 156.50 + 160.200 + 164.175 + 168.50} \right) = 161,4\].

Phương sai của mẫu số liệu:

\[{s^2} = \frac{1}{{500}}\left[ \begin{array}{l}25{\left( {152 - 161,4} \right)^2} + 50{\left( {156 - 161,4} \right)^2} + 200{\left( {160 - 161,4} \right)^2}\\ + 175{\left( {164 - 161,4} \right)^2} + 50{\left( {168 - 161,4} \right)^2}\end{array} \right] = 14,84\]

\( \Rightarrow \) Độ lệch chuẩn: \[s = \sqrt {{s^2}} = \sqrt {14,48} \approx 3,85\]. Chọn D.

Lời giải

Ta có \(y' = 6{x^2} - 6x - 6m\).

Hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(y' \le 0\) với \(\forall x \in \left( { - 1;\,1} \right)\) hay \(m \ge {x^2} - x\) với \(\forall x \in \left( { - 1;\,1} \right)\).

Xét \(f\left( x \right) = {x^2} - x\) trên khoảng \(\left( { - 1;\,1} \right)\) ta có \(f'\left( x \right) = 2x - 1\); \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}\).

Bảng biến thiên

Tìm tất cả các giá thực của tham số \(m\) sao cho hàm số \(y = 2{x^3} - 3{x^2} - 6mx + m\) nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\). (ảnh 1)

Dựa vào bảng biến thiên ta có \(m \ge f\left( x \right)\)với \[\forall x \in \left( { - 1;\,1} \right)\]\( \Leftrightarrow m \ge 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP