Câu hỏi:

26/10/2025 4 Lưu

Sau khi điều tra về cân nặng của 40 học sinh trong lớp 12A ở một trường THPT X thu được kết quả trong mẫu ghép nhóm sau:

Nhóm

Tần số

\[\left[ {30;40} \right)\]

\[2\]

\[\left[ {40;50} \right)\]

\[10\]

\[\left[ {50;60} \right)\]

\[16\]

\[\left[ {60;70} \right)\]

\[8\]

\[\left[ {70;80} \right)\]

\[2\]

\[\left[ {80;90} \right)\]

\[2\]

 

\[n = 40\]

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên ( làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nhóm

Giá trị đại diện

Tần số

\[\left[ {30;40} \right)\]

\[35\]

\[2\]

\[\left[ {40;50} \right)\]

\[45\]

\[10\]

\[\left[ {50;60} \right)\]

\[55\]

\[16\]

\[\left[ {60;70} \right)\]

\[65\]

\[8\]

\[\left[ {70;80} \right)\]

\[75\]

\[2\]

\[\left[ {80;90} \right)\]

\[85\]

\[2\]

 

 

\[n = 40\]

 

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\].

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ \approx 11,4.\end{array}\]

Trả lời: 11,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(s = 161,4\).               
B. \(s = 14,48\).                                                            
C. \(s = 8,2\).                   
D. \(s = 3,85\)

Lời giải

Ta có bảng sau

Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau:   Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\).	B. \(s = 14,48\).                   	C. \(s = 8,2\).	D. \(s = 3,85\) (ảnh 2)

Ta có chiều cao trung bình:

\[\overline x = \frac{1}{{500}}\left( {152.25 + 156.50 + 160.200 + 164.175 + 168.50} \right) = 161,4\].

Phương sai của mẫu số liệu:

\[{s^2} = \frac{1}{{500}}\left[ \begin{array}{l}25{\left( {152 - 161,4} \right)^2} + 50{\left( {156 - 161,4} \right)^2} + 200{\left( {160 - 161,4} \right)^2}\\ + 175{\left( {164 - 161,4} \right)^2} + 50{\left( {168 - 161,4} \right)^2}\end{array} \right] = 14,84\]

\( \Rightarrow \) Độ lệch chuẩn: \[s = \sqrt {{s^2}} = \sqrt {14,48} \approx 3,85\]. Chọn D.

Lời giải

Ta có \(y' = 6{x^2} - 6x - 6m\).

Hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(y' \le 0\) với \(\forall x \in \left( { - 1;\,1} \right)\) hay \(m \ge {x^2} - x\) với \(\forall x \in \left( { - 1;\,1} \right)\).

Xét \(f\left( x \right) = {x^2} - x\) trên khoảng \(\left( { - 1;\,1} \right)\) ta có \(f'\left( x \right) = 2x - 1\); \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}\).

Bảng biến thiên

Tìm tất cả các giá thực của tham số \(m\) sao cho hàm số \(y = 2{x^3} - 3{x^2} - 6mx + m\) nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\). (ảnh 1)

Dựa vào bảng biến thiên ta có \(m \ge f\left( x \right)\)với \[\forall x \in \left( { - 1;\,1} \right)\]\( \Leftrightarrow m \ge 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP