Với giá trị nào của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2} + m\) có hai điểm cực trị \(A\), \(B\) thỏa mãn \(OA = OB\) (\(O\) là gốc tọa độ)?
Với giá trị nào của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2} + m\) có hai điểm cực trị \(A\), \(B\) thỏa mãn \(OA = OB\) (\(O\) là gốc tọa độ)?
Quảng cáo
Trả lời:
Tập xác định: \(D = \mathbb{R}\).
\(y' = 3{x^2} - 6x\), \(y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Do đó đồ thị hàm số đã cho luôn có hai điểm cực trị lần lượt có tọa độ là \(A\left( {0;m} \right)\) và \(B\left( {2; - 4 + m} \right)\).
Ta có \(OA = OB \Leftrightarrow \sqrt {{0^2} + {m^2}} = \sqrt {{2^2} + {{\left( {4 - m} \right)}^2}} \Leftrightarrow {m^2} = 4 + {\left( {4 - m} \right)^2}\)\( \Leftrightarrow 20 - 8m = 0 \Leftrightarrow m = \frac{5}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có bảng sau
![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395150.png)
Ta có chiều cao trung bình:
\[\overline x = \frac{1}{{500}}\left( {152.25 + 156.50 + 160.200 + 164.175 + 168.50} \right) = 161,4\].
Phương sai của mẫu số liệu:
\[{s^2} = \frac{1}{{500}}\left[ \begin{array}{l}25{\left( {152 - 161,4} \right)^2} + 50{\left( {156 - 161,4} \right)^2} + 200{\left( {160 - 161,4} \right)^2}\\ + 175{\left( {164 - 161,4} \right)^2} + 50{\left( {168 - 161,4} \right)^2}\end{array} \right] = 14,84\]
\( \Rightarrow \) Độ lệch chuẩn: \[s = \sqrt {{s^2}} = \sqrt {14,48} \approx 3,85\]. Chọn D.
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]
b) Số phần tử của mẫu là \[n = 30\].
|
Lớp khối lượng (gam) |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
|
\[\left[ {70;80} \right)\] |
\[75\] |
\[3\] |
3 |
|
\[\left[ {80;90} \right)\] |
\[85\] |
\[6\] |
9 |
|
\[\left[ {90;100} \right)\] |
\[95\] |
\[12\] |
21 |
|
\[\left[ {100;110} \right)\] |
\[105\] |
\[6\] |
27 |
|
\[\left[ {110;120} \right)\] |
\[115\] |
\[3\] |
30 |
|
|
|
\[n = 30\] |
|
Có \(\frac{n}{4} = 7,5\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5 nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {{\rm{gam}}} \right)\].
Có \(\frac{{3n}}{4} = 22,5\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5 nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {{\rm{gam}}} \right)\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm
\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {{\rm{gam}}} \right)\].
d) Phương sai của mẫu số liệu ghép nhóm là:
\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].
Đáp án: a) Đúng; b) Sai; c) Sai; c) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Đo chiều cao (tính bằng \[{\rm{cm}}\]) của \[500\] học sinh trong một trường THPT ta thu được kết quả như sau: Độ lệch chuẩn của mẫu số liệu trên là: A. \(s = 161,4\). B. \(s = 14,48\). C. \(s = 8,2\). D. \(s = 3,85\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/10-1761395174.png)
