Công suất \(P\)(đơn vị \(W\)) của một mạch điện được cung cấp bởi một nguồn pin \(12V\)được cho bởi công thức \(P = 12I - 0,5{I^2}\) với \(I\)(đơn vị \(A\)) là cường độ dòng điện. Hỏi công suất \(P\) tăng trong khoảng cường độ dòng điện nào?
Quảng cáo
Trả lời:
Xét hàm số \(P = 12I - 0,5{I^2}\) với \(I \ge 0\).
\(P' = 12 - I;P' = 0 \Leftrightarrow I = 12\).
Bảng biến thiên:

Từ bảng biến thiên ta có công suất P tăng trong khoảng cường độ dòng điện \[\left( {0;12} \right)\]. Chọn D.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y' = 3{x^2} - 4x + a\).
Đồ thị hàm số có điểm cực trị là \(A\left( {1;3} \right)\), ta có: \(\left\{ \begin{array}{l}y'\left( 1 \right) = - 1 + a = 0\\y\left( 1 \right) = - 1 + a + b = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 3\end{array} \right.\).
Khi đó ta có, \(4a - b = 1\). Chọn A.
Lời giải
Hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] xác định và liên tục trên \[\mathbb{R}\].
Ta có: \(f'\left( x \right) = {x^4} - 4{x^3} + 3{x^2} = {x^2}\left( {{x^2} - 4x + 3} \right)\).
\(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {{x^2} - 4x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = 0\\{x^2} - 4x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\).
Bảng xét dấu của hàm số \[f'\left( x \right)\] như sau:
![Phần III. Trắc nghiệm trả lời ngắn Câu 1. Biết hàm số \[f\left( x \right) = \frac{1}{5}{x^5} - {x^4} + {x^3}\] nghịch biến trên khoảng \(\left( {a;b} \right)\) có độ dài bằng \(2\). Tính giá trị biểu thức \(P = a.b\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/7-1761387941.png)
Suy ra hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( {1;3} \right)\] có độ dài bằng \(2,\) nên ta có \[a = 1;b = 3 \Rightarrow P = 1.3 = 3.\]
Trả lời: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

