Câu hỏi:

26/10/2025 7 Lưu

Số lượng sản phẩm bán được của một cửa hàng quần áo trong \(t\) (tháng) được cho bởi công thức: \(S\left( t \right) = 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right)\) với \(t \ge 1\). Xem \(y = S\left( t \right)\) là một hàm số xác định trên nửa khoảng \(\left[ {1; + \infty } \right)\), biết rằng tiệm cận ngang của đồ thị hàm số có dạng \(\frac{a}{b}\,,\,a\,,\,b \in {\mathbb{N}^*}\,,\,\left( {a\,,\,b} \right) = 1\). Tính \(P = a - 2b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } S\left( t \right) = \mathop {\lim }\limits_{x \to + \infty } 200\left( {\frac{2}{3} - \frac{8}{{2 + t}}} \right) = 200.\frac{2}{3} = \frac{{400}}{3}\) \( \Rightarrow a = 400\,;\,b = 3\).

Vậy \(P = a - 2b = 400 - 6 = 394\).

Trả lời: 394.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + 3}}{{x - 2}} = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} + 3}}{{x - 2}} = - \infty \). Suy ra \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

\(y = x + 2 + \frac{7}{{x - 2}}\).

Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{7}{{x - 2}} = 0\). Do đó \(y = x + 2\) là tiệm cận xiên của đồ thị hàm số.

Đường thẳng \({d_2}:y = x + 2\) cắt trục \(Oy\) tại \(A\left( {0;2} \right)\).

Đường thẳng \({d_1}:x = 2\) cắt \({d_2}:y = x + 2\) tại \(B\left( {2;4} \right)\).

Đường thẳng \({d_1}:x = 2\) cắt trục \(Ox\) tại \(C\left( {2;0} \right)\).

Do đó hai đường tiệm cận của đồ thị \(\left( C \right)\) cùng với hai trục tọa độ tạo thành một hình thang vuông \(OABC\).

Cho hàm số \(y = \frac{{{x^2} + 3}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Hai đường tiệm cận của đồ thị \(\left( C \right)\) cùng với hai trục tọa độ tạo thành một hình thang vuông có diện tích \(S\). Tính \(S\). (ảnh 1)

Khi đó \({S_{OABC}} = \frac{{\left( {OA + BC} \right).OC}}{2} = 6\).

Trả lời: 6.

Lời giải

a) Với là \(m = - 1\) ta có: \(y = \frac{{2x - 1}}{{x - 1}}\) nên đồ thị hàm số có tiệm cận ngang \(y = 2\).

b) Với là \(m = 0\) ta có: \(y = \frac{{{x^2} + 2x - 1}}{{x - 1}} \Leftrightarrow y = x + 3 + \frac{2}{{x - 1}}\) nên đồ thị hàm số có tiệm cận xiên \(y = x + 3.\)

c) Với \(m = 2\), ta có: \(y = \frac{{3{x^2} + 2x - 1}}{{x - 1}} \Leftrightarrow y = 3x + 5 + \frac{4}{{x - 1}}\) nên đồ thị hàm số có tiệm cận xiên \(y = 3x + 5\).

Đường tiệm cận xiên của đồ thị hàm số cắt hai trục tọa độ tại 2 điểm \(A\left( {0\,;\,5} \right)\) , \(B\left( { - \frac{5}{3}\,;\,0} \right)\).

Diện tích tam giác \(OAB\)\({S_{OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.5.\frac{5}{3} = \frac{{25}}{6}\).

d) Với \(m = 1\) ta có \(y = \frac{{2{x^2} + 2x - 1}}{{x - 1}}\,\,\left( C \right)\), đồ thị hàm số có tiệm cận đứng là \({d_1}:x = 1\), tiệm cận xiên là \({d_2}:y = 2x + 4\).

Gọi \(M\left( {x;\frac{{2{x^2} + 2x - 1}}{{x - 1}}} \right) \in \left( C \right)\) khi đó \(d\left( {M\,;\,{d_1}} \right) = \left| {x - 1} \right|\); \[d\left( {M\,;\,{d_2}} \right) = \frac{5}{{\sqrt 5 .\left| {x - 1} \right|}}\].

Khi đó \(d\left( {M\,;\,{d_1}} \right).d\left( {M\,;\,{d_2}} \right) = \left| {x - 1} \right|.\frac{5}{{\sqrt 5 .\left| {x - 1} \right|}} = \sqrt 5 \).

Đáp án: a) Đúng;   b) Sai; c) Sai;   d) Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP