Câu hỏi:

26/10/2025 6 Lưu

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án.

Bảng biến thiên dưới đây là của hàm số nào trong các hàm số sau?

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu chỉ chọn một phương án. Câu 1. Bảng biến thiên dưới đây là của hàm số (ảnh 1)

A. \(y = - {x^3} + 3{x^2} - 3\).                                                                            
B. \(y = {x^3} + 3{x^2} - 1\).               
C. \(y = {x^3} - 3x + 2\).                                         
D. \(y = {x^3} - 3{x^2} + 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số \(y = {x^3} - 3{x^2} + 2\).

Ta có: \(a = 1 > 0\,;\,\,y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 2\\x = 2 \Rightarrow y = - 2\end{array} \right.\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(y = - x - 6 - \frac{{14}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0;\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( { - x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{ - 14}}{{x - 3}}} \right) = 0\).

Suy ra tiệm cận xiên của đồ thị hàm số là \(y = - x - 6\).

b) Phương trình đường tiệm cận đứng là \(x = 3\).

Suy ra giao điểm 2 tiệm cận là \(I\left( {3, - 9} \right)\) là tâm đối xứng.

c) \(y' = \frac{{ - {x^2} + 6x + 5}}{{{{\left( {x - 3} \right)}^2}}} = 0 \Leftrightarrow {x^2} - 6x - 5 = 0\) \(\left( * \right)\)

Phương trình \(\left( * \right)\) luôn có 2 nghiệm \({x_1} < 0 < {x_2}\) nên \(\left( C \right)\) luôn có 2 điểm cực trị nằm 2 phía đối với \(Oy\).

d) \(y = 0 \Leftrightarrow - {x^2} - 3x + 4 = 0\) và phương trình luôn có 2 nghiệm suy ra \(\left( C \right)\)cắt \(Ox\) tại hai điểm phân biệt.

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   c) Sai.

Lời giải

Với \(m = 0\) ta có \(y = \frac{{x - 3}}{{x - 1}}\). Khi đó đồ thị hàm số không có tiệm cận xiên.

Với \(m = 2\) ta có \(y = \frac{{2{x^2} + x - 3}}{{x - 1}} = 2x + 3\). Khi đó đồ thị hàm số không có tiệm cận xiên.

Với \(m \ne 0;m \ne 2\) ta có \(y = mx + m + 1 + \frac{{m - 2}}{{x - 1}}\).

Ta có: \[\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - mx - m - 1} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{m - 2}}{{x - 1}} = 0\] nên đường tiệm cận xiên của đồ thị hàm số là \(y = mx + m + 1\). Giao điểm của tiệm cận xiên với trục \(Ox\) là \(\left( {\frac{{ - m - 1}}{m};0} \right)\)

Giao điểm của tiệm cận xiên với trục \(Oy\) là \(\left( {0;m + 1} \right)\).

Đường tiệm cận xiên tạo thành một tam giác thì diện tích của tam giác:

\(S = \frac{1}{2}.\left| {m + 1} \right|.\left| {\frac{{ - m - 1}}{m}} \right| = 2 \Leftrightarrow {\left( {m + 1} \right)^2} = 4\left| m \right| \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 2m + 1 = - 4m;\,\,\,khi\,\,m < 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m \ge 0\\{m^2} + 6m + 1 = 0;\,\,\,\,\,\,\,khi\,\,m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{1}{2}\\m = - 3 + 2\sqrt 2 \\m = - 3 - 2\sqrt 2 \end{array} \right.\).

Vậy tổng giá trị của \(S\) bằng \(\frac{{ - 11}}{2} = - 5,5\).

Trả lời: −5,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = 0.\]                     

B. \[S = - 2.\]                  
C. \[S = 2.\]                                   
D. \[S = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP