Câu hỏi:

26/10/2025 6 Lưu

Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.

Trong không gian Oxyz, cho hai vec\(\overrightarrow a = ( - 2;1; - 3),\overrightarrow b = ( - 1; - 3;2)\) và điểm \(A\left( {4;6; - 3} \right)\).

a) Tọa độ vectơ \(\overrightarrow a - 2\overrightarrow b = (0;1; - 1).\)

b) Tọa độ điểm \(B\left( {2;7; - 6} \right)\) thì \(\vec a = \overrightarrow {AB} .\)

c) Hai vectơ \(\vec a\)\(\vec b\) cùng phương hướng.

d) Góc giữa vectơ \(\vec a\)\(\vec b\)bằng \(120^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì \(\overrightarrow a - 2\overrightarrow b = \left( {0;7; - 7} \right).\)

b) Vì \(\vec a = \overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l} - 2 = {x_B} - 4\\1 = {y_B} - 6\\ - 3 = {z_B} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 2\\{y_B} = 7\\{z_B} = - 6\end{array} \right. \Rightarrow B\left( {2;7; - 6} \right).\)

c) Vì \(\frac{{ - 2}}{{ - 1}} \ne \frac{1}{{ - 3}} \ne \frac{{ - 3}}{2}.\)

d) Vì \(\cos \left( {\vec a;\vec b} \right) = \frac{{ - 2.\left( { - 1} \right) + \left( { - 3} \right).1 + \left( { - 3} \right).2}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2} + {2^2}} }} = - \frac{1}{2} \Rightarrow \left( {\vec a,\vec b} \right) = 120^\circ \).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\overrightarrow {OM} = \left( { - 4;3; - 1} \right)\).

b) \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \)\( \Rightarrow \overrightarrow v = \left( {1;2; - 3} \right)\). Giả sử \(A\left( {x;y;z} \right)\).

\(\overrightarrow {AM} = \overrightarrow v \) nên 4x=13y=21z=3 x=5y=1z=2A5;1;2

c) Ta có \(G\left( {\frac{{ - 2}}{3};\frac{2}{3}; - \frac{4}{3}} \right)\). Tọa độ hình chiếu của \(G\) trên \(\left( {Oxy} \right)\)\(\left( { - \frac{2}{3};\frac{2}{3};0} \right)\).

d) Vì I là trung điểm của MN nên \(I\left( {\frac{{ - 4 + 2}}{2};\frac{{3 - 1}}{2};\frac{{ - 1 - 3}}{2}} \right) \Rightarrow I\left( { - 1;1; - 2} \right)\).

Theo giả thiết \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} = 3\left( {1;0;0} \right) + 2\left( {2; - 1; - 3} \right) - \frac{1}{2}\left( { - 1;1; - 2} \right)\) \( \Rightarrow \overrightarrow w = \left( {\frac{{15}}{2}; - \frac{5}{2}; - 5} \right)\).

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Sai.

Lời giải

Ta có \(\overrightarrow u = \left( {2;\, - 2;\,1} \right)\)

Khi đó \(\left| {\overrightarrow u } \right| = \sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {1^2}} = 3\)\(\left| {\overrightarrow v } \right| = \sqrt {{m^2} + {2^2} + {{\left( {m + 1} \right)}^2}} = \sqrt {2{m^2} + 2m + 5} \)

Do đó \(\left| {\overrightarrow u } \right| = \left| {\overrightarrow v } \right| \Leftrightarrow 9 = 2{m^2} + 2m + 5\)\( \Leftrightarrow {m^2} + m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 2\end{array} \right.\) .

Vậy có hai giá trị của \(m\).

Trả lời: 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(A'\left( {2;3;5} \right)\).                                                                   
B. \(A'\left( {2; - 3; - 5} \right)\).       
C. \(A'\left( { - 2; - 3;5} \right)\).                                                                   
D. \(A'\left( { - 2; - 3; - 5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP