Trong không gian hệ tọa độ Oxyz cho hai điểm \(M\left( { - 4;3; - 1} \right)\) và \(N\left( {2; - 1; - 3} \right)\).
a) \(\overrightarrow {OM} = \left( { - 4;3; - 1} \right)\).
b) Cho \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Khi đó \(A\left( {5;1;2} \right)\).
c) Gọi G là trọng tâm của DOMN. Tọa độ hình chiếu của \(G\) trên \(\left( {Oxy} \right)\) là \(\left( {0;0; - \frac{4}{3}} \right)\).
d) I là trung điểm của đoạn MN. Tọa độ của vectơ \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2}; - \frac{5}{2}; - 7} \right)\).
Trong không gian hệ tọa độ Oxyz cho hai điểm \(M\left( { - 4;3; - 1} \right)\) và \(N\left( {2; - 1; - 3} \right)\).
a) \(\overrightarrow {OM} = \left( { - 4;3; - 1} \right)\).
b) Cho \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Khi đó \(A\left( {5;1;2} \right)\).
c) Gọi G là trọng tâm của DOMN. Tọa độ hình chiếu của \(G\) trên \(\left( {Oxy} \right)\) là \(\left( {0;0; - \frac{4}{3}} \right)\).
d) I là trung điểm của đoạn MN. Tọa độ của vectơ \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2}; - \frac{5}{2}; - 7} \right)\).
Quảng cáo
Trả lời:
a) \(\overrightarrow {OM} = \left( { - 4;3; - 1} \right)\).
b) \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \)\( \Rightarrow \overrightarrow v = \left( {1;2; - 3} \right)\). Giả sử \(A\left( {x;y;z} \right)\).
Vì \(\overrightarrow {AM} = \overrightarrow v \) nên
c) Ta có \(G\left( {\frac{{ - 2}}{3};\frac{2}{3}; - \frac{4}{3}} \right)\). Tọa độ hình chiếu của \(G\) trên \(\left( {Oxy} \right)\) là \(\left( { - \frac{2}{3};\frac{2}{3};0} \right)\).
d) Vì I là trung điểm của MN nên \(I\left( {\frac{{ - 4 + 2}}{2};\frac{{3 - 1}}{2};\frac{{ - 1 - 3}}{2}} \right) \Rightarrow I\left( { - 1;1; - 2} \right)\).
Theo giả thiết \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} = 3\left( {1;0;0} \right) + 2\left( {2; - 1; - 3} \right) - \frac{1}{2}\left( { - 1;1; - 2} \right)\) \( \Rightarrow \overrightarrow w = \left( {\frac{{15}}{2}; - \frac{5}{2}; - 5} \right)\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì nền nhà là hình chữ nhật nên tứ giác \(OABC\) là hình chữ nhật, suy ra \({x_A} = {x_B} = 4\), \({y_C} = {y_B} = 5.\)
Do \(A\) nằm trên trục \(Ox\) nên tọa độ điểm \(A\) là \((4;0;0)\). Tường nhà là hình chữ nhật nên tứ giác \(OCHE\) là hình chữ nhật, suy ra \({y_H} = {y_C} = 5\), \({z_H} = {z_E} = 3\).
Do \(H\) nằm trên mặt phẳng \((Oyz)\) nên tọa độ điểm \(H\) là \((0;5;3)\).
Tứ giác \(OAFE\) là hình chữ nhật nên \({x_F} = {x_A} = 4;{z_F} = {z_E} = 3\).
Do \(F\) nằm trên mặt phẳng \((Ozx)\) nên tọa độ điểm \(F\) là \((4;0;3)\).
b) Nên \(\overrightarrow {AH} = \left( { - 4;5;3} \right)\) và \(\overrightarrow {AF} = (0;0;3)\).
c) Suy ra \(\overrightarrow {AH} .\overrightarrow {AF} = 0 + 0 + 9 = 9\).
d) Để tính góc dốc của mái nhà, ta đi tính số đo của góc nhị diện có cạnh là đường thẳng \(FG\), hai mặt lần lượt là \((FGQP)\) và \((FGHE)\).
Do mặt phẳng \((Ozx)\) vuông góc với hai mặt phẳng \((FGQP)\) và (\(FGHE)\) nên góc \(PFE\) là góc phẳng nhị diện ứng với góc nhị diện đó. Ta có: \(\overrightarrow {FP} = ( - 2;0;1),\overrightarrow {FE} = ( - 4;0;0)\).
Suy ra \(\cos \widehat {PFE} = \cos (\overrightarrow {FP} ,\overrightarrow {FE} ) = \frac{{\overrightarrow {FP} \cdot \overrightarrow {FE} }}{{|\overrightarrow {FP} | \cdot |\overrightarrow {FE} |}}\)
\( = \frac{{( - 2) \cdot ( - 4) + 0 \cdot 0 + 1 \cdot 0}}{{\sqrt {{{( - 2)}^2} + {0^2} + {1^2}} \cdot \sqrt {{{( - 4)}^2} + {0^2} + {0^2}} }} = \frac{{2\sqrt 5 }}{5}{\rm{. }}\)
Do đó, \(\widehat {PFE} \approx 26,6^\circ \). Vậy góc dốc của mái nhà khoảng \(26,6^\circ \).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
Lời giải
Ta có: \(\overrightarrow {AB} = \left( { - 1;\;0;\;1} \right),\overrightarrow {AC} = \left( {1;\;1;\;1} \right)\)\( \Rightarrow \left( { - 1} \right).1 + 0.1 + 1.1 = 0 \Rightarrow AB \bot AC\).
Nên diện tích tam giác \(ABC\) là \(S = \frac{1}{2}AB.AC = \frac{{\sqrt 6 }}{2}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
