Câu hỏi:

26/10/2025 83 Lưu

Ba ô tô cùng khởi hành một lúc từ một bến. Thời gian cả đi lẫn về của xe thứ nhất là 40 phút, của xe thứ hai là 50 phút, của xe thứ ba là 30 phút. Khi trở về bến, mỗi xe đều nghỉ 10 phút rồi tiếp tục chạy. Hỏi sau ít nhất bao lâu thì

a) Xe thứ nhất và xe thứ hai cùng rời bến?

b) Xe thứ hai và xe thứ ba cùng rời bến?

c) Cả ba xe cùng rời bến?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Gọi \(x\) (phút) là khoảng thời gian ngắn nhất mà xe thứ nhất và xe thứ hai cùng rời bến lần tiếp theo \(\left( {x > 0} \right)\).

Khi đó, theo bài ta có \(x = \)BCNN\(\left( {40,\,\,50} \right)\).

Ta có: \(40 = {2^3} \cdot 5\) và \[50 = 2 \cdot {5^2}\].

Do đó BCNN\(\left( {40,\,\,50} \right) = {2^3} \cdot {5^2} = 200.\)

Suy ra \(x = 200\).

Vậy sau ít nhất 200 phút thì xe thứ nhất và xe thứ hai cùng rời bến.

b) Gọi \(x\) (phút) là khoảng thời gian ngắn nhất mà xe thứ hai và xe thứ ba cùng rời bến lần tiếp theo \(\left( {x > 0} \right)\).

Khi đó, theo bài ta có \(x = \)BCNN\(\left( {50,\,\,30} \right)\).

Ta có: \[50 = 2 \cdot {5^2}\] và \(30 = 2 \cdot 3 \cdot 5\).

Do đó BCNN\(\left( {50,\,\,30} \right) = 2 \cdot 3 \cdot {5^2} = 150.\)

Suy ra \(x = 150\).

Vậy sau ít nhất 150 phút thì xe thứ hai và xe thứ ba cùng rời bến.

c) Gọi \(x\) (phút) là khoảng thời gian ngắn nhất mà cả ba xe cùng rời bến lần tiếp theo \(\left( {x > 0} \right)\).

Khi đó, theo bài ta có \(x = \)BCNN\(\left( {40,\,\,50,\,\,30} \right)\).

Ta có: \(40 = {2^3} \cdot 5\); \[50 = 2 \cdot {5^2}\] và \(30 = 2 \cdot 3 \cdot 5\).

Do đó BCNN\(\left( {40,\,\,50,\,\,30} \right) = {2^3} \cdot 3 \cdot {5^2} = 600.\)

Suy ra \(x = 600\).

Vậy sau ít nhất 600 phút thì cả ba xe cùng rời bến.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \(x\) (quyển) là số sách mà thư viện cần lưu trữ \(\left( {x \in \mathbb{N}*,\,\,100 \le x \le 150} \right)\).

Nếu xếp thành bó 10 quyển thì thừa 2 quyển nên ta có \[\left( {x - 2} \right)\,\, \vdots \,\,10\] suy ra \[\left( {x - 2 + 10} \right)\,\, \vdots \,\,10\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,10\].

Nếu xếp thành bó 12 quyển thì thừa 4 quyển nên ta có \(\left( {x - 4} \right)\,\, \vdots \,\,12\) suy ra \[\left( {x - 4 + 12} \right)\,\, \vdots \,\,12\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,12\].

Nếu xếp thành bó 15 quyển thì thừa 7 quyển nên ta có \(\left( {x - 7} \right)\,\, \vdots \,\,15\) suy ra \[\left( {x - 7 + 15} \right)\,\, \vdots \,\,15\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,15\].

Do đó \[\left( {x + 8} \right) \in \]BC\(\left( {10,\,\,12,\,\,15} \right)\).

Ta có: \(10 = 2 \cdot 5;\,\,\,\,\,12 = {2^2} \cdot 3;\,\,\,\,\,15 = 3 \cdot 5.\)

Suy ra BCNN\(\left( {10,\,\,12,\,\,15} \right) = {2^2} \cdot 3 \cdot 5 = 60\).

Nên BC\(\left( {10,\,\,12,\,\,15} \right) = \)B\[\left( {60} \right) = \left\{ {0;\,\,60;\,\,120;\,\,180;\,\,240;\,\,300;\,\,...} \right\}\]

Hay \[\left( {x + 8} \right) \in \left\{ {0;\,\,60;\,\,120;\,\,180;\,\,240;\,\,300;\,\,...} \right\}\]

Khi đó \[x \in \left\{ { - 8;\,\,52;\,\,112;\,\,172;\,\,232;\,\,292;\,\,...} \right\}\]

Mà \(100 \le x \le 150\) nên \(x = 112.\)

Vậy thư viện có 112 quyển sách cần lưu trữ.

Lời giải

Hướng dẫn giải

Gọi số phần quà có thể chia được là \(x\) (phần quà) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Vì 300 thùng mì tôm, 240 thùng bánh mì và 420 lốc sữa được chia đều thành các phần quà nên ta có

\(300 \vdots x,\,\,240 \vdots x,\,\,420 \vdots x\).

Vì cần chia quà sao cho số phần quà nhận được là nhiều nhất nên \(x = \)ƯCLN\(\left( {300,\,\,240,\,\,420} \right)\).

Ta có: \(300 = {2^2} \cdot 3 \cdot {5^2};\,\,\,\,240 = {2^4} \cdot 3 \cdot 5;\,\,\,\,420 = {2^2} \cdot 3 \cdot 5 \cdot 7\).

Suy ra ƯCLN\(\left( {300,\,\,240,\,\,420} \right) = {2^2} \cdot 3 \cdot 5 = 60\).

Vậy chia được nhiều nhất thành 60 phần quà.