Hình bên mô tả cửa xếp tự động. Mỗi khung Hình a được nối bởi các thanh inox có dạng hình thoi cạnh 30 cm.

a) Hỏi mỗi khung như Hình a cần bao nhiêu mét thanh inox để nối?
b) Hỏi cửa xếp tự động ở Hình b cần bao nhiêu mét thanh inox để nối?
Hình bên mô tả cửa xếp tự động. Mỗi khung Hình a được nối bởi các thanh inox có dạng hình thoi cạnh 30 cm.

b) Hỏi cửa xếp tự động ở Hình b cần bao nhiêu mét thanh inox để nối?
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Mỗi khung Hình a được nối bởi 2 hình thoi và thêm hai cạnh của 1 hình thoi cùng kích thước.
Như vậy, mỗi khung như Hình a cần số mét thanh inox để nối là: \(4 \cdot 30 + 2 \cdot 30 = 180{\rm{\;(cm)}}{\rm{.}}\)
b) Ta thấy Hình b có 16 khung như Hình a nên cửa xếp tự động như Hình b cần số mét thanh inox để nối là: \[16 \cdot 180 = 2\,\,880{\rm{\;(cm)}}{\rm{.}}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(x\) (quyển) là số sách mà thư viện cần lưu trữ \(\left( {x \in \mathbb{N}*,\,\,100 \le x \le 150} \right)\).
Nếu xếp thành bó 10 quyển thì thừa 2 quyển nên ta có \[\left( {x - 2} \right)\,\, \vdots \,\,10\] suy ra \[\left( {x - 2 + 10} \right)\,\, \vdots \,\,10\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,10\].
Nếu xếp thành bó 12 quyển thì thừa 4 quyển nên ta có \(\left( {x - 4} \right)\,\, \vdots \,\,12\) suy ra \[\left( {x - 4 + 12} \right)\,\, \vdots \,\,12\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,12\].
Nếu xếp thành bó 15 quyển thì thừa 7 quyển nên ta có \(\left( {x - 7} \right)\,\, \vdots \,\,15\) suy ra \[\left( {x - 7 + 15} \right)\,\, \vdots \,\,15\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,15\].
Do đó \[\left( {x + 8} \right) \in \]BC\(\left( {10,\,\,12,\,\,15} \right)\).
Ta có: \(10 = 2 \cdot 5;\,\,\,\,\,12 = {2^2} \cdot 3;\,\,\,\,\,15 = 3 \cdot 5.\)
Suy ra BCNN\(\left( {10,\,\,12,\,\,15} \right) = {2^2} \cdot 3 \cdot 5 = 60\).
Nên BC\(\left( {10,\,\,12,\,\,15} \right) = \)B\[\left( {60} \right) = \left\{ {0;\,\,60;\,\,120;\,\,180;\,\,240;\,\,300;\,\,...} \right\}\]
Hay \[\left( {x + 8} \right) \in \left\{ {0;\,\,60;\,\,120;\,\,180;\,\,240;\,\,300;\,\,...} \right\}\]
Khi đó \[x \in \left\{ { - 8;\,\,52;\,\,112;\,\,172;\,\,232;\,\,292;\,\,...} \right\}\]
Mà \(100 \le x \le 150\) nên \(x = 112.\)
Vậy thư viện có 112 quyển sách cần lưu trữ.
Lời giải
Hướng dẫn giải
Gọi số phần quà có thể chia được là \(x\) (phần quà) \(\left( {x \in {\mathbb{N}^*}} \right)\)
Vì 300 thùng mì tôm, 240 thùng bánh mì và 420 lốc sữa được chia đều thành các phần quà nên ta có
\(300 \vdots x,\,\,240 \vdots x,\,\,420 \vdots x\).
Vì cần chia quà sao cho số phần quà nhận được là nhiều nhất nên \(x = \)ƯCLN\(\left( {300,\,\,240,\,\,420} \right)\).
Ta có: \(300 = {2^2} \cdot 3 \cdot {5^2};\,\,\,\,240 = {2^4} \cdot 3 \cdot 5;\,\,\,\,420 = {2^2} \cdot 3 \cdot 5 \cdot 7\).
Suy ra ƯCLN\(\left( {300,\,\,240,\,\,420} \right) = {2^2} \cdot 3 \cdot 5 = 60\).
Vậy chia được nhiều nhất thành 60 phần quà.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
